1
|
Wang D, Qiang Y, Guo J, Vannier J, Song Z, Peng J, Zhang B, Sun J, Yu Y, Zhang Y, Zhang T, Yang X, Han J. Early evolution of the ecdysozoan body plan. eLife 2024; 13:RP94709. [PMID: 38976315 PMCID: PMC11231812 DOI: 10.7554/elife.94709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| | - Yaqin Qiang
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Junfeng Guo
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jean Vannier
- Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (CNRS-UMR 5276), Villeurbanne, France
| | - Zuchen Song
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jiaxin Peng
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Boyao Zhang
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jie Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Yilun Yu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Zhang
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Tao Zhang
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Xiaoguang Yang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Abstract
Panarthropoda, the clade comprising the phyla Onychophora, Tardigrada and Euarthropoda, encompasses the largest majority of animal biodiversity. The relationships among the phyla are contested and resolution is key to understanding the evolutionary assembly of panarthropod bodyplans. Molecular phylogenetic analyses generally support monophyly of Onychophora and Euarthropoda to the exclusion of Tardigrada (Lobopodia hypothesis), which is also supported by some analyses of morphological data. However, analyses of morphological data have also been interpreted to support monophyly of Tardigrada and Euarthropoda to the exclusion of Onychophora (Tactopoda hypothesis). Support has also been found for a clade of Onychophora and Tardigrada that excludes Euarthropoda (Protarthropoda hypothesis). Here we show, using a diversity of phylogenetic inference methods, that morphological datasets cannot discriminate statistically between the Lobopodia, Tactopoda and Protarthropoda hypotheses. Since the relationships among the living clades of panarthropod phyla cannot be discriminated based on morphological data, we call into question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species and the evolutionary hypotheses based upon them.
Collapse
Affiliation(s)
- Ruolin Wu
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK,School of Earth Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
4
|
Howard RJ, Edgecombe GD, Shi X, Hou X, Ma X. Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group ecdysozoan. BMC Evol Biol 2020; 20:156. [PMID: 33228518 PMCID: PMC7684930 DOI: 10.1186/s12862-020-01720-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. RESULTS Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda-i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. CONCLUSIONS Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK.
| |
Collapse
|