1
|
Lin JJ, Wang FY, Chung WY, Wang TY. The genomic evolution of visual opsin genes in amphibians. Vision Res 2024; 222:108447. [PMID: 38906036 DOI: 10.1016/j.visres.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.
Collapse
Affiliation(s)
- Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220360. [PMID: 37899012 PMCID: PMC10613548 DOI: 10.1098/rstb.2022.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution caused by artificial light at night (ALAN) is increasingly recognized as a major driver of global environmental change. Since emissions are rapidly growing in an urbanizing world and half of the human population lives close to a freshwater shoreline, rivers and lakes are ever more exposed to light pollution worldwide. However, although light conditions are critical to aquatic species, and freshwaters are biodiversity hotspots and vital to human well-being, only a small fraction of studies conducted on ALAN focus on these ecosystems. The effects of light pollution on freshwaters are broad and concern all levels of biodiversity. Experiments have demonstrated diverse behavioural and physiological responses of species, even at low light levels. Prominent examples are skyglow effects on diel vertical migration of zooplankton and the suppression of melatonin production in fish. However, responses vary widely among taxa, suggesting consequences for species distribution patterns, potential to create novel communities across ecosystem boundaries, and cascading effects on ecosystem functioning. Understanding, predicting and alleviating the ecological impacts of light pollution on freshwaters requires a solid consideration of the physical properties of light propagating in water and a multitude of biological responses. This knowledge is urgently needed to develop innovative lighting concepts, mitigation strategies and specifically targeted measures. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
| | - Klement Tockner
- Senckenberg Society for Nature Research, 60325 Frankfurt Germany
- Department of BioSciences, Goethe-University, 60438 Frankfurt, Germany
| | - Mark O. Gessner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin and 16775 Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, 10587 Berlin, Germany
| |
Collapse
|
4
|
Marin IN, Tiunov AV. Terrestrial crustaceans (Arthropoda, Crustacea): taxonomic diversity, terrestrial adaptations, and ecological functions. Zookeys 2023; 1169:95-162. [PMID: 38328027 PMCID: PMC10848873 DOI: 10.3897/zookeys.1169.97812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/29/2023] [Indexed: 02/09/2024] Open
Abstract
Terrestrial crustaceans are represented by approximately 4,900 species from six main lineages. The diversity of terrestrial taxa ranges from a few genera in Cladocera and Ostracoda to about a third of the known species in Isopoda. Crustaceans are among the smallest as well as the largest terrestrial arthropods. Tiny microcrustaceans (Branchiopoda, Ostracoda, Copepoda) are always associated with water films, while adult stages of macrocrustaceans (Isopoda, Amphipoda, Decapoda) spend most of their lives in terrestrial habitats, being independent of liquid water. Various adaptations in morphology, physiology, reproduction, and behavior allow them to thrive in virtually all geographic areas, including extremely arid habitats. The most derived terrestrial crustaceans have acquired highly developed visual and olfactory systems. The density of soil copepods is sometimes comparable to that of mites and springtails, while the total biomass of decapods on tropical islands can exceed that of mammals in tropical rainforests. During migrations, land crabs create record-breaking aggregations and biomass flows for terrestrial invertebrates. The ecological role of terrestrial microcrustaceans remains poorly studied, while omnivorous macrocrustaceans are important litter transformers and soil bioturbators, occasionally occupying the position of the top predators. Notably, crustaceans are the only group among terrestrial saprotrophic animals widely used by humans as food. Despite the great diversity and ecological impact, terrestrial crustaceans, except for woodlice, are often neglected by terrestrial ecologists. This review aims to narrow this gap discussing the diversity, abundance, adaptations to terrestrial lifestyle, trophic relationships and ecological functions, as well as the main methods used for sampling terrestrial crustaceans.
Collapse
Affiliation(s)
- Ivan N. Marin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, RussiaA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, RussiaA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
5
|
Mitra AT, Womack MC, Gower DJ, Streicher JW, Clark B, Bell RC, Schott RK, Fujita MK, Thomas KN. Ocular lens morphology is influenced by ecology and metamorphosis in frogs and toads. Proc Biol Sci 2022; 289:20220767. [PMID: 36382525 PMCID: PMC9667364 DOI: 10.1098/rspb.2022.0767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The shape and relative size of an ocular lens affect the focal length of the eye, with consequences for visual acuity and sensitivity. Lenses are typically spherical in aquatic animals with camera-type eyes and axially flattened in terrestrial species to facilitate vision in optical media with different refractive indices. Frogs and toads (Amphibia: Anura) are ecologically diverse, with many species shifting from aquatic to terrestrial ecologies during metamorphosis. We quantified lens shape and relative size using 179 micro X-ray computed tomography scans of 126 biphasic anuran species and tested for correlations with life stage, environmental transitions, adult habits and adult activity patterns. Across broad phylogenetic diversity, tadpole lenses are more spherical than those of adults. Biphasic species with aquatic larvae and terrestrial adults typically undergo ontogenetic changes in lens shape, whereas species that remain aquatic as adults tend to retain more spherical lenses after metamorphosis. Further, adult lens shape is influenced by adult habit; notably, fossorial adults tend to retain spherical lenses following metamorphosis. Finally, lens size relative to eye size is smaller in aquatic and semiaquatic species than other adult ecologies. Our study demonstrates how ecology shapes visual systems, and the power of non-invasive imaging of museum specimens for studying sensory evolution.
Collapse
Affiliation(s)
- Amartya T. Mitra
- Division of Biosciences, University College London, London, UK
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Molly C. Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
| | - David J. Gower
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | | | - Brett Clark
- Imaging and Analysis Centre, The Natural History Museum, London SW7 5BD, UK
| | - Rayna C. Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Ryan K. Schott
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Matthew K. Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kate N. Thomas
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
6
|
Murphy MJ, Westerman EL. Evolutionary history limits species' ability to match colour sensitivity to available habitat light. Proc Biol Sci 2022; 289:20220612. [PMID: 35582803 PMCID: PMC9115023 DOI: 10.1098/rspb.2022.0612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spectrum of light that an animal sees-from ultraviolet to far red light-is governed by the number and wavelength sensitivity of a family of retinal proteins called opsins. It has been hypothesized that the spectrum of light available in an environment influences the range of colours that a species has evolved to see. However, invertebrates and vertebrates use phylogenetically distinct opsins in their retinae, and it remains unclear whether these distinct opsins influence what animals see, or how they adapt to their light environments. Systematically using published visual sensitivity data from across animal phyla, we found that terrestrial animals are more sensitive to shorter and longer wavelengths of light than aquatic animals and that invertebrates are more sensitive to shorter wavelengths of light than vertebrates. Using phylogenetically controlled analyses, we found that closed and open canopy habitat species have different spectral sensitivities when comparing across the Metazoa and excluding habitat generalists, while deepwater animals are no more sensitive to shorter wavelengths of light than shallow-water animals. Our results suggest that animals do adapt to their light environment; however, the invertebrate-vertebrate evolutionary divergence may limit the degree to which animals can perform visual tuning.
Collapse
Affiliation(s)
- Matthew J. Murphy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Erica L. Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Egri Á, Mészáros Á, Kriska G. Spectral sensitivity transition in the compound eyes of a twilight-swarming mayfly and its visual ecological implications. Proc Biol Sci 2022; 289:20220318. [PMID: 35473376 PMCID: PMC9043733 DOI: 10.1098/rspb.2022.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic insect species that leave the water after larval development, such as mayflies, have to deal with extremely different visual environments in their different life stages. Measuring the spectral sensitivity of the compound eyes of the virgin mayfly (Ephoron virgo) resulted in differences between the sensitivity of adults and larvae. Larvae were primarily green-, while adults were mostly UV-sensitive. The sensitivity of adults and larvae was the same in the UV, but in the green spectral range, adults were 3.3 times less sensitive than larvae. Transmittance spectrum measurements of larval skins covering the eye showed that the removal of exuvium during emergence cannot explain the spectral sensitivity change of the eyes. Taking numerous sky spectra from the literature, the ratio of UV and green photons in the skylight was shown to be maximal for θ ≈ -13° solar elevation, which is in the θmin = -14.7° and θmax = -7.1° typical range of swarming that was established from webcam images of real swarmings. We suggest that the spectral sensitivity of both the larval and adult eyes are adapted to the optical environment of the corresponding life stages.
Collapse
Affiliation(s)
- Ádám Egri
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary
| | - Ádám Mészáros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary.,Doctoral School of Environmental Sciences, Eötvös University, Pázmány sétány 1, Budapest H-1117 Hungary.,Group for Methodology in Biology Teaching, Biological Institute, Eötvös University, Pázmány sétány 1, Budapest H-1117, Hungary
| | - György Kriska
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, Budapest H-1113, Hungary.,Group for Methodology in Biology Teaching, Biological Institute, Eötvös University, Pázmány sétány 1, Budapest H-1117, Hungary
| |
Collapse
|
8
|
Watson-Zink VM. Making the grade: Physiological adaptations to terrestrial environments in decapod crabs. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 64:101089. [PMID: 34399185 DOI: 10.1016/j.asd.2021.101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
All extant macroscopic terrestrial diversity has evolved from the ancestors of a small group of successful terrestrial colonizers, but in a few lineages this transition has independently occurred multiple times in spite of the significant functional challenges it presents. Decapod crabs have transitioned from marine to terrestrial environments at least ten times, occupy diverse habitats, and display varying degrees of terrestriality. Previous attempts to categorize land crab diversity relied on single traits, did not explicitly distinguish between brachyuran and anomuran lineages, and did not separate lineages that colonized land via freshwater or marine environments. As a result, critical phylogenetic and ecological constraints were missing from these earlier classifications. In this paper, I reclassify terrestriality in the land crabs by designating four transition pathways that reflect deep phylogenetic relationships between the two decapod crab infraorders and the route-specific nature of this transition. I then describe the adaptive traits that evolved in response to six primary terrestrial selective challenges. I conclude by proposing six grades of terrestriality in this system that describe observable trait-by-environment associations, and propose studies that can test the hypothetical sequence of trait evolution and the nature of convergence in the land crabs using phylogenomic and transcriptomic tools.
Collapse
|
9
|
Kühne JL, van Grunsven RHA, Jechow A, Hölker F. Impact of different wavelengths of artificial light at night on phototaxis in aquatic insects. Integr Comp Biol 2021; 61:1182-1190. [PMID: 34180520 DOI: 10.1093/icb/icab149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The use of artificial light at night (ALAN) is increasing exponentially worldwide and there is growing evidence that ALAN contributes to the decline of insect populations. One of the most conspicuous ecological effects is the strong attraction of ALAN to flying insects. In several studies, light sources with strong short wavelength emissions have been shown to attract the highest numbers of flying insects. Furthermore, flying stages of aquatic insects are reported to be more vulnerable to ALAN than flying stages of terrestrial insects. This is concerning because freshwater habitats are likely affected by ALAN that originates from human activity centers, which are typically close to sources of freshwater. However, the effects of ALAN on aquatic insects, that spend their larval phase (amphibiotic insects) or their whole life cycle (fully aquatic insects) in freshwaters, are entirely understudied. Here, we investigated phototaxis of aquatic insects to ALAN at different wavelengths and intensities. We used floating light traps and compared four, near monochromatic, lights (blue, green, red and yellow) at two different photopic light intensities in a ditch system, which was not exposed to ALAN previously. Similar to flying stages of (aquatic and terrestrial) insects we found a strong positive phototaxis of aquatic life stages. However, in contrast to the flying stages there is no clear preference for short-wavelength light. Overall, responsivity to wavelengths in the center of the visible range (green, yellow; 500-600nm) was significant for all orders of aquatic insects studied and the nymphs of Ephemeroptera didn't respond to blue light at all. This is likely an adaption to how light is attenuated in freshwater systems, where not only the water itself but also a variety of optical constituents act as a color filter, often like in in our case filtering out short-wavelength light. Therefore, insects living in freshwater bodies often live in longer wavelength-dominated environments and might therefore be especially sensitive to green/yellow light. In conclusion, the different spectral sensitivities of both aquatic and flying insects should be taken into account when planning lighting near fresh water.
Collapse
Affiliation(s)
- Judith L Kühne
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Roy H A van Grunsven
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Dutch Butterfly Conservation, Wageningen, The Netherlands
| | - Andreas Jechow
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|