1
|
Khalife A, Billen J, Economo EP. Evidence of a thoracic crop in workers, soldiers, and queens of Carebara perpusilla ants (Formicidae: Myrmicinae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:36. [PMID: 37462726 DOI: 10.1007/s00114-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
The ability to share and store food is paramount in group-living animals, allowing a finely tuned distribution of resources over time and individuals and an enhanced survival over periods of food scarcity. Ants have several ways to store food: one of them is their gastral crop, also known as a "social stomach." Nutrients in the crop can be regurgitated to nestmates through oral trophallaxis (mouth-to-mouth) or proceed to the midgut by opening the proventriculus, a valve connecting the crop to the midgut. However, some ants are also known to have a so-called "thoracic crop," an extension of the esophagus that allows for additional storage space. In this study, we provide the first evidence of a thoracic crop in the genus Carebara, in reproductive (queen) and sterile (soldier and worker) castes. We discuss how the ant body plan allowed for the evolution of a novel food storage structure in the mesothorax.
Collapse
Affiliation(s)
- Adam Khalife
- Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe, Kagawa Prefecture, Miki, 761-0795, Japan.
| | - Johan Billen
- Zoological Institute, University of Leuven, 3000, Leuven, Belgium
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami District, Okinawa, Japan
| |
Collapse
|
2
|
Zhuang Y, Xu W, Zhang G, Mai H, Li X, He H, Ran H, Liu Y. Unparalleled details of soft tissues in a Cretaceous ant. BMC Ecol Evol 2022; 22:146. [PMID: 36526958 PMCID: PMC9756460 DOI: 10.1186/s12862-022-02099-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
For social insects such as ants, the internal organs are likely important in understanding their eusocial behavior and evolution. Such organs, however, are rarely preserved on fossils. In each of the few cases reporting exceptionally fossilized soft tissues in arthropods, the nervous, muscular and cardiovascular systems have been described individually, but never in combination. Here, we report a female specimen (gyne) of the extinct ant group-†Zigrasimecia-included in a Cretaceous amber piece from Kachin, Myanmar, with an almost complete system formed by various internal organs. These include the brain, the main exocrine system, part of the digestive tract, and several muscle clusters. This research expands our knowledge of internal anatomy in stem group ants. As the gyne bears a morphologically unique labrum, our specimen's internal and external features support the notion that the early ant may have special ecological habits during the Cretaceous period.
Collapse
Affiliation(s)
- Yuhui Zhuang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, South Waihuan Road, Chenggong District, Kunming, 650500, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Wenjing Xu
- Key Laboratory of National Forestry and Grassland Administration On Management of Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, South Waihuan Road, Chenggong District, Kunming, 650500, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Xiaoqin Li
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, South Waihuan Road, Chenggong District, Kunming, 650500, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration On Management of Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Ran
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, 541004, China.
- Biological Education and Research Laboratory, Mancheng High School of Hebei Province, Baoding, 072150, China.
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, South Waihuan Road, Chenggong District, Kunming, 650500, China.
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
3
|
Kurihara Y, Ogawa K, Chiba Y, Hayashi Y, Miyazaki S. Thoracic crop formation is spatiotemporally coordinated with flight muscle histolysis during claustral colony foundation in Lasius japonicus queens. ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 69:101169. [PMID: 35660224 DOI: 10.1016/j.asd.2022.101169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
In a majority of ants, a newly mated queen independently founds a colony and claustrally raises her first brood without foraging outside the nest. During claustral independent colony foundation (ICF) in several ants, the esophagus of the founding queen expands and develops into a "thoracic crop," which is then filled with a liquid substrate for larval feeding. It has been suggested that these substrates are converted from the founding queen's body reserves (e.g., histolyzed flight muscles) or redistributed from a gastral crop. Here, we describe thoracic crop development in Lasius japonicus queens during claustral ICF. The foundresses claustrally feed their larvae from weeks 2-5 after ICF onset, and the first worker emerges at week 6. The development proceeds as follows: in week 0, the foundress' dorsal esophageal wall is pleated and thickened. Then, from weeks 2-5, the esophagus expands toward a dorsal space previously occupied by flight muscles, following flight muscle histolysis. Gastral crop expansion follows esophageal expansion. Thus, thoracic crop formation may be spatiotemporally coordinated with flight muscle histolysis in Lasius japonicus queens, and similar developmental regulations might be common in other claustral ICF ants.
Collapse
Affiliation(s)
- Yuta Kurihara
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, 819-0395, Japan; Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yudai Chiba
- College of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan
| | - Yoshinobu Hayashi
- Department of Biology, Keio University, Yokohama, Kanagawa, 223-8521, Japan
| | - Satoshi Miyazaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan; College of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610, Japan; Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, 194-8610, Japan.
| |
Collapse
|