Arican C, Schmitt FJ, Rössler W, Strube-Bloss MF, Nawrot MP. The mushroom body output encodes behavioral decision during sensory-motor transformation.
Curr Biol 2023;
33:4217-4224.e4. [PMID:
37657449 DOI:
10.1016/j.cub.2023.08.016]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Animals form a behavioral decision by evaluating sensory evidence on the background of past experiences and the momentary motivational state. In insects, we still lack understanding of how and at which stage of the recurrent sensory-motor pathway behavioral decisions are formed. The mushroom body (MB), a central brain structure in insects1 and crustaceans,2,3 integrates sensory input of different modalities4,5,6 with the internal state, the behavioral state, and external sensory context7,8,9,10 through a large number of recurrent, mostly neuromodulatory inputs,11,12 implicating a functional role for MBs in state-dependent sensory-motor transformation.13,14 A number of classical conditioning studies in honeybees15,16 and fruit flies17,18,19 have provided accumulated evidence that at its output, the MB encodes the valence of a sensory stimulus with respect to its behavioral relevance. Recent work has extended this notion of valence encoding to the context of innate behaviors.8,20,21,22 Here, we co-analyzed a defined feeding behavior and simultaneous extracellular single-unit recordings from MB output neurons (MBONs) in the cockroach in response to timed sensory stimulation with odors. We show that clear neuronal responses occurred almost exclusively during behaviorally responded trials. Early MBON responses to the sensory stimulus preceded the feeding behavior and predicted its occurrence or non-occurrence from the single-trial population activity. Our results therefore suggest that at its output, the MB does not merely encode sensory stimulus valence. We hypothesize instead that the MB output represents an integrated signal of internal state, momentary environmental conditions, and experience-dependent memory to encode a behavioral decision.
Collapse