1
|
Lopéz-Martínez EE, Claudio-Rizo JA, Caldera-Villalobos M, Becerra-Rodríguez JJ, Cabrera-Munguía DA, Cano-Salazar LF, Betancourt-Galindo R. Hydrogels for Biomedicine Based on Semi-Interpenetrating Polymeric Networks of Collagen/Guar Gum: Applications in Biomedical Field and Biocompatibility. Macromol Res 2022. [DOI: 10.1007/s13233-022-0048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Probiotics in Intestinal Mucosal Healing: A New Therapy or an Old Friend? Pharmaceuticals (Basel) 2021; 14:ph14111181. [PMID: 34832962 PMCID: PMC8622522 DOI: 10.3390/ph14111181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease, and ulcerative colitis are characterized by chronic and relapsing inflammation, while their pathogenesis remains mostly unelucidated. Gut commensal microbiota seem to be one of the various implicated factors, as several studies have shown a significant decrease in the microbiome diversity of patients with IBD. Although the question of whether microbiota dysbiosis is a causal factor or the result of chronic inflammation remains unanswered, one fact is clear; active inflammation in IBD results in the disruption of the mucus layer structure, barrier function, and also, colonization sites. Recently, many studies on IBD have been focusing on the interplay between mucosal and luminal microbiota, underlining their possible beneficial effect on mucosal healing. Regarding this notion, it has now been shown that specific probiotic strains, when administrated, lead to significantly decreased inflammation, amelioration of colitis, and improved mucosal healing. Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate quantity. The aim of this review was to present and discuss the current findings on the role of gut microbiota and their metabolites in intestinal wound healing and the effects of probiotics on intestinal mucosal wound closure.
Collapse
|
3
|
Delko T, Watson DI, Beck-Schimmer B, Immanuel A, Hussey DJ, Zingg U. Cytokine Response in the Pleural Fluid and Blood in Minimally Invasive and Open Esophagectomy. World J Surg 2019; 43:2631-2639. [PMID: 31222636 DOI: 10.1007/s00268-019-05069-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transthoracic esophagectomy for cancer triggers a massive inflammatory reaction. The data whether a minimally invasive esophagectomy (MIE) leads to less pronounced inflammatory response compared to open right-sided transthoracic esophagectomy (OE) are scarce. The aim of this study was to evaluate the extent of the inflammatory reaction, represented by levels of the pro-inflammatory interleukins IL-6 and IL-8, the anti-inflammatory IL-1 RA and the chemokines CINC-1 and MCP-1 in the right pleural fluid and the blood from patients undergoing standard OE or MIE. METHODS Pleural drainage fluid and blood was collected at five different time points during the first 72 h following surgery, and the concentrations of IL-6, IL-8, IL-1 RA, CINC-1 and MCP-1 were analyzed using enzyme-linked immune-sorbent assays in 24 patients undergoing MIE or OE. RESULTS The groups were matched for cancer stage and comorbidities. Pro- and anti-inflammatory mediator levels in the pleural fluid were markedly increased at the end of surgery and on postoperative days 1-3. The pleural inflammatory response of all cyto- and chemokines was lower in the MIE group, reaching significance at some time points. Cyto- and chemokine response levels measured in the blood were overall lower compared to those in the pleural fluid. The chemokines CINC-1 and MCP-1 reacted less pronounced or not at all. Preoperative pulmonary comorbidity, postoperative pulmonary morbidity and length of surgery were associated with an increased reaction in selected mediators. CONCLUSIONS The minimally invasive technique attenuates the inflammatory response, especially locally in the thoracic compartment. Length of procedure, preoperative pulmonary comorbidity and postoperative pulmonary complications are mirrored in an increase in individual inflammatory markers in the pleural fluid. The value of the chemokines CINC-1 and MCP-1 as markers of inflammation in the setting of esophagectomy is unclear.
Collapse
Affiliation(s)
- T Delko
- Department of Surgery, Flinders University, Bedford Park, Australia
| | - D I Watson
- Department of Surgery, Flinders University, Bedford Park, Australia
| | - B Beck-Schimmer
- Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | - A Immanuel
- Department of Surgery, Flinders University, Bedford Park, Australia
| | - D J Hussey
- Department of Surgery, Flinders University, Bedford Park, Australia
| | - U Zingg
- Department of Surgery, Flinders University, Bedford Park, Australia.
- Department of Surgery, Limmattal Hospital, Urdorferstrasse 100, 8952, Schlieren, Switzerland.
| |
Collapse
|
4
|
Costa BPD, Gonçalves AC, Abrantes AM, Matafome P, Seiça R, Sarmento-Ribeiro AB, Botelho MF, Castro-Sousa F. Intestinal inflammatory and redox responses to the perioperative administration of teduglutide in rats. Acta Cir Bras 2017; 32:648-661. [PMID: 28902941 DOI: 10.1590/s0102-865020170080000007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose: To investigate the inflammatory and redox responses to teduglutide on an animal model of laparotomy and intestinal anastomosis. Methods: Wistar rats (n=62) were allocated into four groups: "Ileal Resection and Anastomosis" vs. "Laparotomy", each one split into "Postoperative Teduglutide Administration" vs. "No Treatment"; and euthanized at the third or the seventh day. Ileal and blood samples were recovered at the baseline and at the euthanasia. Flow cytometry was used to study the inflammatory response (IL-1α, MCP-1, TNF-α, IFN-γ and IL-4 levels), oxidative stress (cytosolic peroxides, mitochondrial reactive species, intracellular glutathione and mitochondrial membrane potential) and cellular viability and death (annexin V/propidium iodide double staining). Results: Postoperative teduglutide treatment was associated with higher cellular viability index and lower early apoptosis ratio at the seventh day; higher cytosolic peroxides level at the third day and mitochondrial overgeneration of reactive species at the seventh day; higher tissue concentration of IL-4 and lower local pro-to-anti-inflammatory cytokines ratio at the seventh day. Conclusion: Those findings suggest an intestinal pro-oxidative and anti-inflammatory influence of teduglutide on the peri-operative context with a potential interference in the intestinal anastomotic healing.
Collapse
Affiliation(s)
- Beatriz Pinto da Costa
- MD, Department of Surgery "A", Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal. Conception and design of the study; acquisition, analysis and interpretation of data; manuscript writing
| | - Ana Cristina Gonçalves
- BSc, PhD, Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology Unit, Faculty of Medicine, Universidade de Coimbra, Portugal. Acquisition of data
| | - Ana Margarida Abrantes
- BSc, PhD, Center for Neuroscience and Cell Biology (CNC), and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Universidade de Coimbra, Portugal. Acquisition of data
| | - Paulo Matafome
- BSc, PhD, Institute of Physiology, Faculty of Medicine, Universidade de Coimbra, Portugal. Acquisition of data
| | - Raquel Seiça
- MD, Institute of Physiology, Faculty of Medicine, Universidade de Coimbra, Portugal. Critical revision
| | - Ana Bela Sarmento-Ribeiro
- PhD, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Universidade de Coimbra, Portugal. Critical revision
| | - Maria Filomena Botelho
- PhD, Center for Neuroscience and Cell Biology (CNC) and Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Universidade de Coimbra, Portugal. Critical revision
| | - Francisco Castro-Sousa
- PhD, Department of Surgery "A", Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Portugal. Critical revision
| |
Collapse
|
5
|
Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, Yamagata AS, Pessoa AFM, Malheiros G, dos Santos MF, Lima C, Farsky SH, Camara NOS, Williner MR, Bernal CA, Calder PC, Curi R. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. PLoS One 2016; 11:e0165115. [PMID: 27764229 PMCID: PMC5072690 DOI: 10.1371/journal.pone.0165115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022] Open
Abstract
Introduction Impaired wound healing has been widely reported in diabetes. Linoleic acid (LA) accelerates the skin wound healing process in non-diabetic rats. However, LA has not been tested in diabetic animals. Objectives We investigated whether oral administration of pure LA improves wound healing in streptozotocin-induced diabetic rats. Methods Dorsal wounds were induced in streptozotocin-induced type-1 diabetic rats treated or not with LA (0.22 g/kg b.w.) for 10 days. Wound closure was daily assessed for two weeks. Wound tissues were collected at specific time-points and used to measure fatty acid composition, and contents of cytokines, growth factors and eicosanoids. Histological and qPCR analyses were employed to examine the dynamics of cell migration during the healing process. Results LA reduced the wound area 14 days after wound induction. LA also increased the concentrations of cytokine-induced neutrophil chemotaxis (CINC-2αβ), tumor necrosis factor-α (TNF-α) and leukotriene B4 (LTB4), and reduced the expression of macrophage chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). These results together with the histological analysis, which showed accumulation of leukocytes in the wound early in the healing process, indicate that LA brought forward the inflammatory phase and improved wound healing in diabetic rats. Angiogenesis was induced by LA through elevation in tissue content of key mediators of this process: vascular-endothelial growth factor (VEGF) and angiopoietin-2 (ANGPT-2). Conclusions Oral administration of LA hastened wound closure in diabetic rats by improving the inflammatory phase and angiogenesis.
Collapse
Affiliation(s)
- Hosana G. Rodrigues
- School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
- * E-mail:
| | - Marco A. R. Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fabio T. Sato
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana Magdalon
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | | | - Ana S. Yamagata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Ana Flávia M. Pessoa
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Gabriella Malheiros
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Marinilce F. dos Santos
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Camila Lima
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Sandra H. Farsky
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Maria R. Williner
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Claudio A. Bernal
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| |
Collapse
|
6
|
Xu D, Xiong H, Xiao Z, He J, Liao Q, Xue L, Wang N, Yang Q. Uterine Cytokine Profile in a Rat Model of Endometritis. Am J Reprod Immunol 2014; 73:214-20. [DOI: 10.1111/aji.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 01/13/2023] Open
Affiliation(s)
- Daojun Xu
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Hailin Xiong
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Zhonglin Xiao
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Jun He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Qing Liao
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Liqun Xue
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Naidong Wang
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Qing Yang
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| |
Collapse
|