• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (2594)   Subscriber (50684)
For: Guo D, Zhang Y. Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2014.06.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Number Cited by Other Article(s)
1
Xiao L, Li X, Cao P, He Y, Tang W, Li J, Wang Y. A Dynamic-Varying Parameter Enhanced ZNN Model for Solving Time-Varying Complex-Valued Tensor Inversion With Its Application to Image Encryption. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:13681-13690. [PMID: 37224356 DOI: 10.1109/tnnls.2023.3270563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
2
Li K, Li L, Tang C, Lu W, Fan X. Three-Dimensional Path Planning Based on Six-Direction Search Scheme. SENSORS (BASEL, SWITZERLAND) 2024;24:1193. [PMID: 38400351 PMCID: PMC10893041 DOI: 10.3390/s24041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
3
Wu D, Zhang Y. Zhang equivalency of inequation-to-inequation type for constraints of redundant manipulators. Heliyon 2024;10:e23570. [PMID: 38173488 PMCID: PMC10761789 DOI: 10.1016/j.heliyon.2023.e23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]  Open
4
Xiao L, Huang W, Li X, Sun F, Liao Q, Jia L, Li J, Liu S. ZNNs With a Varying-Parameter Design Formula for Dynamic Sylvester Quaternion Matrix Equation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:9981-9991. [PMID: 35412991 DOI: 10.1109/tnnls.2022.3163293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
5
Xiao X, Jiang C, Mei Q, Zhang Y. Noise‐tolerate and adaptive coefficient zeroing neural network for solving dynamic matrix square root. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2023. [DOI: 10.1049/cit2.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]  Open
6
Wei P, Wang X, Wei Y. Neural Network Models for Time-Varying Tensor Complementarity Problems. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
7
Xiao L, Jia L, Wang Y, Dai J, Liao Q, Zhu Q. Performance Analysis and Applications of Finite-Time ZNN Models With Constant/Fuzzy Parameters for TVQPEI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022;33:6665-6676. [PMID: 34081588 DOI: 10.1109/tnnls.2021.3082950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
8
Gerontitis D, Behera R, Shi Y, Stanimirović PS. A robust noise tolerant zeroing neural network for solving time-varying linear matrix equations. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
9
Inverse kinematics of redundant manipulators with guaranteed performance. ROBOTICA 2022. [DOI: 10.1017/s026357472100045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
10
Pose control of constrained redundant arm using recurrent neural networks and one-iteration computing algorithm. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.108007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
11
Wang S, Jin L, Du X, Stanimirovi PS. Accelerated convergent zeroing neurodynamics models for solving multi-linear systems with M-tensors. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
12
Zhang Z, Zheng L, Qiu T. A gain-adjustment neural network based time-varying underdetermined linear equation solving method. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
13
Veerasamy V, Abdul Wahab NI, Ramachandran R, Kamel S, Othman ML, Hizam H, Farade R. Power flow solution using a novel generalized linear Hopfield network based on Moore–Penrose pseudoinverse. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
14
Liu B, Fu D, Qi Y, Huang H, Jin L. Noise-tolerant gradient-oriented neurodynamic model for solving the Sylvester equation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
15
Real-domain QR decomposition models employing zeroing neural network and time-discretization formulas for time-varying matrices. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
Mo C, Gerontitis D, Stanimirović PS. Solving the time-varying tensor square root equation by varying-parameters finite-time Zhang neural network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Li H, Shao S, Qin S, Yang Y. Neural networks with finite-time convergence for solving time-varying linear complementarity problem. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Tan N, Huang M, Yu P, Wang T. Neural-dynamics-enabled Jacobian inversion for model-based kinematic control of multi-section continuum manipulators. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
19
A Vary-Parameter Convergence-Accelerated Recurrent Neural Network for Online Solving Dynamic Matrix Pseudoinverse and its Robot Application. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
20
Performance analysis of nonlinear activated zeroing neural networks for time-varying matrix pseudoinversion with application. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2020.106735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
21
Hu Z, Li K, Li K, Li J, Xiao L. Zeroing neural network with comprehensive performance and its applications to time-varying Lyapunov equation and perturbed robotic tracking. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
22
Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
23
Huang H, Fu D, Zhang J, Xiao X, Wang G, Liao S. Modified Newton integration neural algorithm for solving the multi-linear M-tensor equation. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Tan Z, Li W, Xiao L, Hu Y. New Varying-Parameter ZNN Models With Finite-Time Convergence and Noise Suppression for Time-Varying Matrix Moore-Penrose Inversion. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:2980-2992. [PMID: 31536017 DOI: 10.1109/tnnls.2019.2934734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
25
A recurrent neural network applied to optimal motion control of mobile robots with physical constraints. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105880] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Xiao L, Li K, Duan M. Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:3360-3369. [PMID: 30716052 DOI: 10.1109/tnnls.2019.2891252] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
27
A Repeatable Motion Scheme for Kinematic Control of Redundant Manipulators. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019;2019:5426986. [PMID: 31641347 PMCID: PMC6769351 DOI: 10.1155/2019/5426986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2019] [Indexed: 11/18/2022]
28
Jin L, Li S, Hu B, Liu M. A survey on projection neural networks and their applications. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
29
Complex Zhang neural networks for complex-variable dynamic quadratic programming. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
30
Xu Z, Li S, Zhou X, Yan W, Cheng T, Huang D. Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
31
Improved Gradient Neural Networks for Solving Moore–Penrose Inverse of Full-Rank Matrix. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-09983-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
32
Lv X, Xiao L, Tan Z, Yang Z. Wsbp function activated Zhang dynamic with finite-time convergence applied to Lyapunov equation. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
33
Li Y, Li S, Hannaford B. A Novel Recurrent Neural Network for Improving Redundant Manipulator Motion Planning Completeness. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2018;2018:2956-2961. [PMID: 34336368 DOI: 10.1109/icra.2018.8461204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
34
Jin L, Li S, Yu J, He J. Robot manipulator control using neural networks: A survey. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Bi-criteria minimization with MWVN–INAM type for motion planning and control of redundant robot manipulators. ROBOTICA 2018. [DOI: 10.1017/s0263574717000625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
36
Jin L, Li S, Wang H, Zhang Z. Nonconvex projection activated zeroing neurodynamic models for time-varying matrix pseudoinversion with accelerated finite-time convergence. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2017.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
37
Jin L, Li S. Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
38
Li Z, Ma W, Yin Z, Guo H. Tracking control of time-varying knee exoskeleton disturbed by interaction torque. ISA TRANSACTIONS 2017;71:458-466. [PMID: 28823408 DOI: 10.1016/j.isatra.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
39
Feng J, Qin S, Shi F, Zhao X. A recurrent neural network with finite-time convergence for convex quadratic bilevel programming problems. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-2926-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
40
Xiao L. A nonlinearly-activated neurodynamic model and its finite-time solution to equality-constrained quadratic optimization with nonstationary coefficients. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2015.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA