1
|
Abstract
In this article, a systematic literature review of 419 articles on energy demand modeling, published between 2015 and 2020, is presented. This provides researchers with an exhaustive overview of the examined literature and classification of techniques for energy demand modeling. Unlike in existing literature reviews, in this comprehensive study all of the following aspects of energy demand models are analyzed: techniques, prediction accuracy, inputs, energy carrier, sector, temporal horizon, and spatial granularity. Readers benefit from easy access to a broad literature base and find decision support when choosing suitable data-model combinations for their projects. Results have been compiled in comprehensive figures and tables, providing a structured summary of the literature, and containing direct references to the analyzed articles. Drawbacks of techniques are discussed as well as countermeasures. The results show that among the articles, machine learning (ML) techniques are used the most, are mainly applied to short-term electricity forecasting on a regional level and rely on historic load as their main data source. Engineering-based models are less dependent on historic load data and cover appliance consumption on long temporal horizons. Metaheuristic and uncertainty techniques are often used in hybrid models. Statistical techniques are frequently used for energy demand modeling as well and often serve as benchmarks for other techniques. Among the articles, the accuracy measured by mean average percentage error (MAPE) proved to be on similar levels for all techniques. This review eases the reader into the subject matter by presenting the emphases that have been made in the current literature, suggesting future research directions, and providing the basis for quantitative testing of hypotheses regarding applicability and dominance of specific methods for sub-categories of demand modeling.
Collapse
|
2
|
Exploring an Ensemble of Methods that Combines Fuzzy Cognitive Maps and Neural Networks in Solving the Time Series Prediction Problem of Gas Consumption in Greece. ALGORITHMS 2019. [DOI: 10.3390/a12110235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper introduced a new ensemble learning approach, based on evolutionary fuzzy cognitive maps (FCMs), artificial neural networks (ANNs), and their hybrid structure (FCM-ANN), for time series prediction. The main aim of time series forecasting is to obtain reasonably accurate forecasts of future data from analyzing records of data. In the paper, we proposed an ensemble-based forecast combination methodology as an alternative approach to forecasting methods for time series prediction. The ensemble learning technique combines various learning algorithms, including SOGA (structure optimization genetic algorithm)-based FCMs, RCGA (real coded genetic algorithm)-based FCMs, efficient and adaptive ANNs architectures, and a hybrid structure of FCM-ANN, recently proposed for time series forecasting. All ensemble algorithms execute according to the one-step prediction regime. The particular forecast combination approach was specifically selected due to the advanced features of each ensemble component, where the findings of this work evinced the effectiveness of this approach, in terms of prediction accuracy, when compared against other well-known, independent forecasting approaches, such as ANNs or FCMs, and the long short-term memory (LSTM) algorithm as well. The suggested ensemble learning approach was applied to three distribution points that compose the natural gas grid of a Greek region. For the evaluation of the proposed approach, a real-time series dataset for natural gas prediction was used. We also provided a detailed discussion on the performance of the individual predictors, the ensemble predictors, and their combination through two well-known ensemble methods (the average and the error-based) that are characterized in the literature as particularly accurate and effective. The prediction results showed the efficacy of the proposed ensemble learning approach, and the comparative analysis demonstrated enough evidence that the approach could be used effectively to conduct forecasting based on multivariate time series.
Collapse
|
3
|
Breker S, Rentmeister J, Sick B, Braun M. Hosting capacity of low-voltage grids for distributed generation: Classification by means of machine learning techniques. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Deng S, Yuan C, Yang L, Zhang L. Distributed electricity load forecasting model mining based on hybrid gene expression programming and cloud computing. Pattern Recognit Lett 2018. [DOI: 10.1016/j.patrec.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang L, Wang Z, Qu H, Liu S. Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2018.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Performance analysis of simplified Fuzzy ARTMAP and Probabilistic Neural Networks for identifying structural damage growth. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2016.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting. ENERGIES 2016. [DOI: 10.3390/en9080640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|