Baiz AA, Ahmadi H, Shariatmadari F, Karimi Torshizi MA. A Gaussian process regression model to predict energy contents of corn for poultry.
Poult Sci 2020;
99:5838-5843. [PMID:
33142501 PMCID:
PMC7647822 DOI:
10.1016/j.psj.2020.07.044]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/21/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022] Open
Abstract
The present study proposes a Gaussian process regression (GPR) approach to develop a model to predict true metabolizable energy corrected for nitrogen (TMEn) content of corn samples (as model output) for poultry given levels of feed chemical compositions of crude protein, ether extract, crude fiber, and ash (as model inputs). A 30 corn samples obtained from 5 origins [Brazil (n = 9), China (n = 5), Iran (n = 7), and Ukraine (n = 9)] were assayed to determine chemical composition and TMEn content using chemical analyses and bioassay technique. In addition to GPR model, data were also analyzed by multiple linear regression (MLR) model. Results revealed that corn samples of different origins differ in their gross energy and chemical composition of crude protein, crude fiber, and ash, but no differences were observed for their ether extract and TMEn contents. Based on model evaluation criteria of R2 and root mean square error (RMSE), the GPR model showed satisfactory performance (R2 = 0.92 and RMSE = 33.68 kcal/kg DM) in predicting TMEn and produced relatively better prediction values than those produce by MLR (R2 = 0.23 and RMSE = 104.85 kcal/kg DM). The GPR model may be capable of improving our aptitude and capacity to precisely predict energy contents of feed ingredients to formulate optimal diets for poultry.
Collapse