1
|
Cui X, Luo Q, Zhou Y, Deng W, Yin S. Quantum-Inspired Moth-Flame Optimizer With Enhanced Local Search Strategy for Cluster Analysis. Front Bioeng Biotechnol 2022; 10:908356. [PMID: 36032716 PMCID: PMC9400010 DOI: 10.3389/fbioe.2022.908356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
Abstract
Clustering is an unsupervised learning technique widely used in the field of data mining and analysis. Clustering encompasses many specific methods, among which the K-means algorithm maintains the predominance of popularity with respect to its simplicity and efficiency. However, its efficiency is significantly influenced by the initial solution and it is susceptible to being stuck in a local optimum. To eliminate these deficiencies of K-means, this paper proposes a quantum-inspired moth-flame optimizer with an enhanced local search strategy (QLSMFO). Firstly, quantum double-chain encoding and quantum revolving gates are introduced in the initial phase of the algorithm, which can enrich the population diversity and efficiently improve the exploration ability. Second, an improved local search strategy on the basis of the Shuffled Frog Leaping Algorithm (SFLA) is implemented to boost the exploitation capability of the standard MFO. Finally, the poor solutions are updated using Levy flight to obtain a faster convergence rate. Ten well-known UCI benchmark test datasets dedicated to clustering are selected for testing the efficiency of QLSMFO algorithms and compared with the K-means and ten currently popular swarm intelligence algorithms. Meanwhile, the Wilcoxon rank-sum test and Friedman test are utilized to evaluate the effect of QLSMFO. The simulation experimental results demonstrate that QLSMFO significantly outperforms other algorithms with respect to precision, convergence speed, and stability.
Collapse
Affiliation(s)
- Xinrong Cui
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning, China
| | - Qifang Luo
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning, China
- *Correspondence: Qifang Luo, ; Yongquan Zhou,
| | - Yongquan Zhou
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning, China
- Xiangsihu College of Gunagxi University for Nationalities, Nanning, China
- *Correspondence: Qifang Luo, ; Yongquan Zhou,
| | - Wu Deng
- College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
| | - Shihong Yin
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning, China
| |
Collapse
|
2
|
Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L. An Improved Moth-Flame Optimization Algorithm with Adaptation Mechanism to Solve Numerical and Mechanical Engineering Problems. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1637. [PMID: 34945943 PMCID: PMC8700729 DOI: 10.3390/e23121637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO's issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.
Collapse
Affiliation(s)
- Mohammad H. Nadimi-Shahraki
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Ali Fatahi
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Hoda Zamani
- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran; (A.F.); (H.Z.)
- Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane 4006, Australia
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan;
- School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|