1
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
2
|
Dhar S, Kaeley DK, Kanan MJ, Yildirim-Ayan E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life (Basel) 2021; 11:life11101043. [PMID: 34685414 PMCID: PMC8537592 DOI: 10.3390/life11101043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Of the most prevalent issues surrounding long-term spaceflight, the sustainability of human life and the maintenance of homeostasis in an extreme environment are of utmost concern. It has been observed that the human immune system is dysregulated in space as a result of gravitational unloading at the cellular level, leading to potential complications in astronaut health. A plethora of studies demonstrate intracellular changes that occur due to microgravity; however, these ultimately fall short of identifying the underlying mechanisms and dysfunctions that cause such changes. This comprehensive review covers the changes in human adaptive immunity due to microgravity. Specifically, there is a focus on uncovering the gravisensitive steps in T cell signaling pathways. Changes in gravitational force may lead to interrupted immune signaling cascades at specific junctions, particularly membrane and surface receptor-proximal molecules. Holistically studying the interplay of signaling with morphological changes in cytoskeleton and other cell components may yield answers to what in the T cell specifically experiences the consequences of microgravity. Fully understanding the nature of this problem is essential in order to develop proper countermeasures before long-term space flight is conducted.
Collapse
Affiliation(s)
- Sarit Dhar
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Dilpreet Kaur Kaeley
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Mohamad Jalal Kanan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-530-8257; Fax: +1-419-530-8030
| |
Collapse
|
3
|
Uda Y, Spatz JM, Hussein A, Garcia JH, Lai F, Dedic C, Fulzele K, Dougherty S, Eberle M, Adamson C, Misener L, Gerstenfeld L, Divieti Pajevic P. Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. FASEB J 2021; 35:e21578. [PMID: 33835498 DOI: 10.1096/fj.202100059r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023]
Abstract
Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. Growing evidence suggests that osteocytes, the most abundant cells in the mineralized bone matrix, play a key role in sensing mechanical forces applied to the skeleton and integrating the orchestrated response into subcellular biochemical signals to modulate bone homeostasis. However, the precise molecular mechanisms underlying both mechanosensation and mechanotransduction in late-osteoblast-to-osteocyte cells under microgravity (µG) have yet to be elucidated. To unravel the mechanisms by which late osteoblasts and osteocytes sense and respond to mechanical unloading, we exposed the osteocytic cell line, Ocy454, to 2, 4, or 6 days of µG on the SpaceX Dragon-6 resupply mission to the International Space Station. Our results showed that µG impairs the differentiation of osteocytes, consistent with prior osteoblast spaceflight experiments, which resulted in the downregulation of key osteocytic genes. Importantly, we demonstrate the modulation of critical glycolysis pathways in osteocytes subjected to microgravity and discovered a set of mechanical sensitive genes that are consistently regulated in multiple cell types exposed to microgravity suggesting a common, yet to be fully elucidated, genome-wide response to microgravity. Ground-based simulated microgravity experiments utilizing the NASA rotating-wall-vessel were unable to adequately replicate the changes in microgravity exposure highlighting the importance of spaceflight missions to understand the unique environmental stress that microgravity presents to diverse cell types. In summary, our findings demonstrate that osteocytes respond to µG with an increase in glucose metabolism and oxygen consumption.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jordan M Spatz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amira Hussein
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Joseph H Garcia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Forest Lai
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Chris Dedic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Keertik Fulzele
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sun Y, Kuang Y, Zuo Z. The Emerging Role of Macrophages in Immune System Dysfunction under Real and Simulated Microgravity Conditions. Int J Mol Sci 2021; 22:2333. [PMID: 33652750 PMCID: PMC7956436 DOI: 10.3390/ijms22052333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
In the process of exploring space, the astronaut's body undergoes a series of physiological changes. At the level of cellular behavior, microgravity causes significant alterations, including bone loss, muscle atrophy, and cardiovascular deconditioning. At the level of gene expression, microgravity changes the expression of cytokines in many physiological processes, such as cell immunity, proliferation, and differentiation. At the level of signaling pathways, the mitogen-activated protein kinase (MAPK) signaling pathway participates in microgravity-induced immune malfunction. However, the mechanisms of these changes have not been fully elucidated. Recent studies suggest that the malfunction of macrophages is an important breakthrough for immune disorders in microgravity. As the first line of immune defense, macrophages play an essential role in maintaining homeostasis. They activate specific immune responses and participate in large numbers of physiological activities by presenting antigen and secreting cytokines. The purpose of this review is to summarize recent advances on the dysfunction of macrophages arisen from microgravity and to discuss the mechanisms of these abnormal responses. Hopefully, our work will contribute not only to the future exploration on the immune system in space, but also to the development of preventive and therapeutic drugs against the physiological consequences of spaceflight.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Y.K.); (Z.Z.)
| | | | | |
Collapse
|
5
|
Down-regulation of GATA1-dependent erythrocyte-related genes in the spleens of mice exposed to a space travel. Sci Rep 2019; 9:7654. [PMID: 31114014 PMCID: PMC6529412 DOI: 10.1038/s41598-019-44067-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.
Collapse
|
6
|
Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Sci Rep 2017; 7:46318. [PMID: 28393904 PMCID: PMC5385879 DOI: 10.1038/srep46318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environment that can disrupt homeostasis of many physiological processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals inoculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled microgravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled microgravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled microgravity. This study provides a window into the adaptive responses that the host animal and its symbiont use during modeled microgravity.
Collapse
|
7
|
Chapes SK, Ortega MT. Understanding macrophage differentiation during space flight: The importance of ground-based experiments before space flight. ACTA ACUST UNITED AC 2013; 3:40-47. [PMID: 24432200 DOI: 10.2174/18776116112029990011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In preparation for a space flight on STS-126, two in vitro culture systems were used to investigate macrophage colony stimulating factor-dependent macrophage differentiation from mouse primary bone marrow cells. The patented Techshot Cell Cult Bioreactor and the BioServe Fluid Processing Apparatus (FPA) were operated in different orientations to determine their impact on macrophage growth and differentiation. Bone marrow cell parameters were determined after cells were grown in FPAs incubated at 37°C in vertical or horizontal orientations, and macrophage cell recovery was significantly higher from FPAs that were incubated in the horizontal orientation compared to "vertical" FPAs. Similarly, when bone marrow cells were grown in the Techshot bioreactor, there were significant differences in the numbers of macrophages recovered after 7 days, depending on movement and orientation of the bioreactor. Macrophage recovery was highest when the patented bioreactor was rotated in the horizontal, x-axis plane (merry-go-round fashion) compared to static and vertically, y-axis plane rotated (Ferris wheel fashion) bioreactors. In addition, the expression of F4/80 and other differentiation markers varied depending on whether macrophages differentiated in FPAs or in bioreactors. After 7 days, significant differences in size, granularity and molecule expression were seen even when the same primary bone marrow cells were used to seed the cultures. These data show that culture outcomes are highly dependent on the culture device and device orientation. Moreover, the impact of the culture system needs to be understood in order to interpret space flight data.
Collapse
|