1
|
Chandy M, Ishida M, Shikatani EA, El-Mounayri O, Park LC, Afroze T, Wang T, Marsden PA, Husain M. c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells. PLoS One 2018; 13:e0202778. [PMID: 30169548 PMCID: PMC6118359 DOI: 10.1371/journal.pone.0202778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miR) are small non-coding RNAs that regulate diverse biological functions. The bicistronic gene miR-143/145 determines cell fate and phenotype of vascular smooth muscle cells (VSMC), in part, by destabilizing Elk-1 mRNA. The transcription factor c-Myb also regulates differentiation and proliferation of VSMC, and here we test whether these effects may be mediated by miR-143/145. METHODS & RESULTS Flow cytometry of cardiovascular-directed d3.75 embryoid bodies (EBs) isolated smooth muscle progenitors with specific cell surface markers. In c-myb knockout (c-myb -/-) EB, these progenitors manifest low levels of miR-143 (19%; p<0.05) and miR-145 (6%; p<0.01) expression as compared to wild-type (wt) EB. Primary VSMC isolated from transgenic mice with diminished expression (c-myblx/lx) or reduced activity (c-mybh/h) of c-Myb also manifest low levels of miR-143 (c-myblx/lx: 50%; c-mybh/h: 41%), and miR-145 (c-myblx/lx: 49%; c-mybh/h: 56%), as compared to wt (P<0.05). Sequence alignment identified four putative c-Myb binding sites (MBS1-4) in the proximal promoter (PP) of the miR-143/145 gene. PP-reporter constructs revealed that point mutations in MBS1 and MBS4 abrogated c-Myb-dependent transcription from the miR-143/145 PP (P<0.01). Chromatin immunoprecipitation (ChIP) revealed preferential c-Myb binding at MBS4 (p<0.001). By conjugating Elk-1 3'-untranslated region (UTR) to a reporter and co-transducing wt VSMC with this plus a miR-143-antagomir, and co-transducing c-myblx/lx VSMC with this plus a miR-143-mimic, we demonstrate that c-Myb's ability to repress Elk-1 is mediated by miR-143. CONCLUSION c-Myb regulates VSMC gene expression by transcriptional activation of miR-143/145.
Collapse
Affiliation(s)
- Mark Chandy
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Masayoshi Ishida
- Department of Physiology & Regenerative Medicine, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Eric A. Shikatani
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Omar El-Mounayri
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Lawrence Changsu Park
- Li Ka Shing Knowledge Translation Institute, St. Michael’s Hospital, Toronto, Canada (LCP)
| | - Talat Afroze
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Tao Wang
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departments of Physiology, University of Toronto, Toronto, Canada
| | - Philip A. Marsden
- Department of Medicine, University of Toronto, Toronto, Canada
- Li Ka Shing Knowledge Translation Institute, St. Michael’s Hospital, Toronto, Canada (LCP)
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Departments of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Ishida M, El-Mounayri O, Kattman S, Zandstra P, Sakamoto H, Ogawa M, Keller G, Husain M. Regulated expression and role of c-Myb in the cardiovascular-directed differentiation of mouse embryonic stem cells. Circ Res 2011; 110:253-64. [PMID: 22116818 DOI: 10.1161/circresaha.111.259499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). OBJECTIVE To define the role of c-Myb in SMC differentiation from ESC. METHODS AND RESULTS In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. CONCLUSIONS c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.
Collapse
Affiliation(s)
- Masayoshi Ishida
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada, M5G 1L7
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Regulation of smooth muscle cell phenotype by glycosaminoglycan identity. Acta Biomater 2011; 7:1031-9. [PMID: 21094702 DOI: 10.1016/j.actbio.2010.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/13/2010] [Accepted: 11/16/2010] [Indexed: 01/29/2023]
Abstract
The retention of lipoproteins in the arterial intima is an initial event in early atherosclerosis and occurs, in part, through interactions between negatively charged glycosaminoglycans (GAGs) and the positively charged residues of apolipoproteins. Smooth muscle cells (SMCs) which infiltrate into the lipoprotein-enriched intima have been observed to transform into lipid-laden foam cells. This phenotypic switch is associated with SMC acquisition of a macrophage-like capacity to phagocytose lipoproteins and/or of an adipocyte-like capacity to synthesize fatty acids de novo. The aim of the present work was to explore the impact of GAG identity on SMC foam cell formation using a scaffold environment intended to be mimetic of early atherosclerosis. In these studies, we focused on chondroitin sulfate C (CSC), dermatan sulfate (DS), and an intermediate molecular weight hyaluronan (HAIMW, ∼400 kDa), the levels and/or distribution of each of which are significantly altered in atherosclerosis. DS hydrogels were associated with greater SMC phagocytosis of apolipoprotein B than HAIMW gels. Similarly, only SMCs in DS constructs maintained increased expression of the adipocyte marker A-FABP relative to HAIMW gels over 35 days of culture. The increased SMC foam cell phenotype in DS hydrogels was reflected in a corresponding decrease in SMC myosin heavy chain expression in these constructs relative to HAIMW gels at day 35. In addition, this DS-associated increase in foam cell formation was mirrored in an increased SMC synthetic phenotype, as evidenced by greater levels of collagen type I and glucose 6-phosphate dehydrogenase in DS gels than in HAIMW gels. Combined, these results support the increasing body of literature that suggests a critical role for DS-bearing proteoglycans in early atherosclerosis.
Collapse
|
4
|
Nigro P, Satoh K, O'Dell MR, Soe NN, Cui Z, Mohan A, Abe JI, Alexis JD, Sparks JD, Berk BC. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. ACTA ACUST UNITED AC 2010; 208:53-66. [PMID: 21173104 PMCID: PMC3023134 DOI: 10.1084/jem.20101174] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclophilin A (CyPA; encoded by Ppia) is a ubiquitously expressed protein secreted in response to inflammatory stimuli. CyPA stimulates vascular smooth muscle cell migration and proliferation, endothelial cell adhesion molecule expression, and inflammatory cell chemotaxis. Given these activities, we hypothesized that CyPA would promote atherosclerosis. Apolipoprotein E-deficient (Apoe(-/-)) mice fed a high-cholesterol diet for 16 wk developed more severe atherosclerosis compared with Apoe(-/-)Ppia(-/-) mice. Moreover, CyPA deficiency was associated with decreased low-density lipoprotein uptake, VCAM-1 (vascular cell adhesion molecule 1) expression, apoptosis, and increased eNOS (endothelial nitric oxide synthase) expression. To understand the vascular role of CyPA in atherosclerosis development, bone marrow (BM) cell transplantation was performed. Atherosclerosis was greater in Apoe(-/-) mice compared with Apoe(-/-)Ppia(-/-) mice after reconstitution with CyPA(+/+) BM cells, indicating that vascular-derived CyPA plays a crucial role in the progression of atherosclerosis. These data define a role for CyPA in atherosclerosis and suggest CyPA as a target for cardiovascular therapies.
Collapse
Affiliation(s)
- Patrizia Nigro
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Barillari G, Iovane A, Bonuglia M, Albonici L, Garofano P, Di Campli E, Falchi M, Condò I, Manzari V, Ensoli B. Fibroblast growth factor-2 transiently activates the p53 oncosuppressor protein in human primary vascular smooth muscle cells: Implications for atherogenesis. Atherosclerosis 2010; 210:400-6. [DOI: 10.1016/j.atherosclerosis.2010.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
|