1
|
Jawabri AA, John A, Ghattas MA, Mahgoub RE, Hamad MIK, Barakat MT, Shobi B, Daggag H, Ali BR. Cellular and functional evaluation of LDLR missense variants reported in hypercholesterolemic patients demonstrates their hypomorphic impacts on trafficking and LDL internalization. Front Cell Dev Biol 2024; 12:1412236. [PMID: 39114568 PMCID: PMC11303217 DOI: 10.3389/fcell.2024.1412236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by increased LDL-cholesterol levels. About 85% of FH cases are caused by LDLR mutations encoding the low-density lipoprotein receptor (LDLR). LDLR is synthesized in the endoplasmic reticulum (ER) where it undergoes post-translational modifications and then transported through Golgi apparatus to the plasma membrane. Over 2900 LDLR variants have been reported in FH patients with limited information on the pathogenicity and functionality of many of them. This study aims to elucidate the cellular trafficking and functional implications of LDLR missense variants identified in suspected FH patients using biochemical and functional methods. Methods We used HeLa, HEK293T, and LDLR-deficient-CHO-ldlA7 cells to evaluate the subcellular localization and LDL internalization of ten LDLR missense variants (p.C167F, p.D178N, p.C243Y, p.E277K, p.G314R, p.H327Y, p.D477N, p.D622G, p.R744Q, and p.R814Q) reported in multiethnic suspected FH patients. We also analyzed the functional impact of three variants (p.D445E, p.D482H, and p.C677F), two of which previously shown to be retained in the ER. Results We show that p.D622G, p.D482H, and p.C667F are largely retained in the ER whereas p.R744Q is partially retained. The other variants were predominantly localized to the plasma membrane. LDL internalization assays in CHO-ldlA7 cells indicate that p.D482H, p.C243Y, p.D622G, and p.C667F have quantitatively lost their ability to internalize Dil-LDL with the others (p.C167F, p.D178N, p.G314R, p.H327Y, p.D445E, p.D477N, p.R744Q and p.R814Q) showing significant losses except for p.E277K which retained full activity. However, the LDL internalization assay is only to able evaluate the impact of the variants on LDL internalization and not the exact functional defects such as failure to bind LDL. The data represented illustrate the hypomorphism nature of variants causing FH which may explain some of the variable expressivity of FH. Conclusion Our combinatorial approach of in silico, cellular, and functional analysis is a powerful strategy to determine pathogenicity and FH disease mechanisms which may provide opportunitites for novel therapeutic strategies.
Collapse
Affiliation(s)
- Aseel A. Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Radwa E. Mahgoub
- College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maha T. Barakat
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Bindu Shobi
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Hinda Daggag
- Research Institute, Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Marziliano N, Medoro A, Mignogna D, Saccon G, Folzani S, Reverberi C, Russo C, Intrieri M. Sudden Cardiac Death Caused by a Fatal Association of Hypertrophic Cardiomyopathy ( MYH7, p.Arg719Trp), Heterozygous Familial Hypercholesterolemia ( LDLR, p.Gly343Lys) and SARS-CoV-2 B.1.1.7 Infection. Diagnostics (Basel) 2021; 11:1229. [PMID: 34359312 PMCID: PMC8307649 DOI: 10.3390/diagnostics11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) and heterozygous familial hypercholesterolemia (HeFH), two of the most common genetic cardiovascular disorders, can lead to sudden cardiac death. These conditions could be complicated by concomitant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection as in the case herein described. A young amateur soccer player died in late October 2020 after a fatal arrhythmia and the autopsy revealed the presence of HCM with diffuse non-obstructive coronary disease. The molecular autopsy revealed a compound condition with a first mutation in the MYH7 gene (p.Arg719Trp) and a second mutation in the LDLR gene (p.Gly343Cys): both have already been described as associated with HCM and HeFH, respectively. In addition, molecular analyses showed the presence of SARS-CoV-2 lineage B.1.1.7 (UK variant with high titer in the myocardium. Co-segregation analysis within the family (n = 19) showed that heterozygous LDLR mutation was maternally inherited, while the heterozygous MYH7 genetic lesion was de novo. All family member carriers of the LDLR mutation (n = 13) had systematic higher LDL plasma concentrations and positive records of cardiac and vascular ischemic events at young age. Considering that HCM mutations are in themselves involved in the predisposition to malignant arrhythmogenicity and HeFH could cause higher risk of cardiac complications in SARS-CoV-2 infection, this case could represent an example of a potential SARS-CoV-2 infection role in triggering or unmasking inherited cardiovascular disease, whose combination might represent the cause of fatal arrhythmia at such a young age. Additionally, it can provide clues in dating the presence of the SARS-CoV-2 lineage B.1.1.7 in Northern Italy in the early phases of the second pandemic wave.
Collapse
Affiliation(s)
- Nicola Marziliano
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
- Clinical Pathology Laboratory, ASST Rhodense, Rho, 20017 Milan, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
| | - Donatella Mignogna
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
| | - Giovanni Saccon
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
| | - Stefano Folzani
- Poliambulatorio Città di Collecchio, Collecchio, 43044 Parma, Italy; (S.F.); (C.R.)
| | - Claudio Reverberi
- Poliambulatorio Città di Collecchio, Collecchio, 43044 Parma, Italy; (S.F.); (C.R.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (D.M.); (G.S.); (C.R.); (M.I.)
| |
Collapse
|
3
|
Alhababi D, Zayed H. Spectrum of mutations of familial hypercholesterolemia in the 22 Arab countries. Atherosclerosis 2018; 279:62-72. [PMID: 30415195 DOI: 10.1016/j.atherosclerosis.2018.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an inherited genetic disorder of lipid metabolism characterized by a high serum LDL-cholesterol profile and xanthoma formation, and FH increases the risk of premature atherosclerosis and cardiovascular disease (CVD). Mutations in the low-density lipoprotein (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin 9 (PCSK9), and LDLRAP1 genes have been associated with FH. Although FH is a major risk for CVD, the disease prevalence and its underlying molecular basis in the 22 Arab countries are still understudied. This study aimed to analyze all peer-reviewed studies related to the prevalence of FH and its causative mutations in the 22 Arab countries. METHODS We searched five literature databases (Scopus, Science Direct, Web of Science, PubMed, and Google Scholar) from inception until June 2018, using all possible search terms to capture all of the genetic and prevalence data related to Arab patients with FH. RESULTS A total of 5,484 titles and abstracts were identified; 51 studies met our inclusion criteria for the final systematic review. Fifty-one mutations in Arab patients with FH were identified in only eight Arab countries; 47 were identified in the LDLR gene, two in the PCSK9 gene, and two in LDLRAP1 gene. Twenty mutations in the LDLR gene were distinctive to Arab patients. A few studies reported prevalence estimates, ranging from 0.4% to 6.8%. CONCLUSIONS This is the first systematic review to dissect the up-to-date status of the genetic epidemiology of Arab patients with FH. It seems that FH is underdiagnosed and that its prevalence is understudied due to the dearth of published information about Arab patients with FH. Therefore, there is a need for well-controlled genetic epidemiological studies on Arab patients with FH.
Collapse
Affiliation(s)
- Dalal Alhababi
- College of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, Biomedical Program, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Mollaki V, Drogari E. Genetic causes of monogenic familial hypercholesterolemia in the Greek population: Lessons, mistakes, and the way forward. J Clin Lipidol 2016; 10:748-756. [DOI: 10.1016/j.jacl.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
5
|
Jiang L, Sun LY, Pan XD, Chen PP, Tang L, Wang W, Zhao LM, Yang SW, Wang LY. Characterization of the unique Chinese W483X mutation in the low-density lipoprotein–receptor gene in young patients with homozygous familial hypercholesterolemia. J Clin Lipidol 2016; 10:538-546.e5. [DOI: 10.1016/j.jacl.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
|
6
|
Al-Allaf FA, Alashwal A, Abduljaleel Z, Taher MM, Siddiqui SS, Bouazzaoui A, Abalkhail H, Aun R, Al-Allaf AF, AbuMansour I, Azhar Z, Ba-Hammam FA, Khan W, Athar M. Identification of a recurrent frameshift mutation at the LDLR exon 14 (c.2027delG, p.(G676Afs*33)) causing familial hypercholesterolemia in Saudi Arab homozygous children. Genomics 2015; 107:24-32. [PMID: 26688439 DOI: 10.1016/j.ygeno.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.(G676Afs*33) in exon 14 of the LDLR gene in 9 probands and their relatives in an apparently unrelated Saudi families. We also describe a three dimensional homology model of the LDL receptor protein (LDLR) structure and examine the consequence of the frameshift mutation p.(G676Afs*33), as this could affect the LDLR structure in a region involved in dimer formation, and protein stability. This finding of a recurrent mutation causing FH in the Saudi population could serve to develop a rapid genetic screening procedure for FH, and the 3D-structure analysis of the mutant LDLR, may provide tools to develop a mechanistic model of the LDLR function.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia; Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, Saudi Arabia.
| | - Abdullah Alashwal
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shahid S Siddiqui
- Department of Oral and Basic Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala Abalkhail
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rakan Aun
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Iman AbuMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zohor Azhar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A Ba-Hammam
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
7
|
The distribution and characteristics of LDL receptor mutations in China: A systematic review. Sci Rep 2015; 5:17272. [PMID: 26608663 PMCID: PMC4660303 DOI: 10.1038/srep17272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common and serious dominant genetic disease, and its main pathogenic gene is the low-density lipoprotein receptor (LDLR) gene. This study aimed to perform a systematic review of LDLR mutations in China. Using PubMed, Embase, Wanfang (Chinese), the Chinese National Knowledge Infrastructure (Chinese), and the Chinese Biological and Medical database (Chinese), public data were limited to December 2014. The Medical Subject Headings terms and the following key words were used: “familial hypercholesterolemia”, “Chinese”, “China”, “Hong Kong”, and “Taiwan”. A total of 74 studies including 295 probands with 131 LDLR mutations were identified. Most of the mutations were located in exon 4 of LDLR and approximately 60% of the mutations were missense mutations. Thirty new mutations that were not recorded in the LDLR databases were found. In silico analysis revealed that most of the mutations were pathogenic. The primary LDLR mutations were C308Y, H562Y, and A606T, and all of the mutations had functional significance. Prevalence data suggest that there are nearly 3.8 million FH patients in China, although reported numbers are much smaller, suggesting that FH is widely misunderstood. This systematic review provides information that is specific to China for inclusion in the international FH database.
Collapse
|
8
|
Bamimore MA, Zaid A, Banerjee Y, Al-Sarraf A, Abifadel M, Seidah NG, Al-Waili K, Al-Rasadi K, Awan Z. Familial hypercholesterolemia mutations in the Middle Eastern and North African region: A need for a national registry. J Clin Lipidol 2015; 9:187-94. [DOI: 10.1016/j.jacl.2014.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/15/2014] [Accepted: 11/23/2014] [Indexed: 01/01/2023]
|
9
|
Jelassi A, Najah M, Slimani A, Jguirim I, Slimane MN, Varret M. Autosomal dominant hypercholesterolemia: needs for early diagnosis and cascade screening in the tunisian population. Curr Genomics 2013; 14:25-32. [PMID: 23997648 PMCID: PMC3580777 DOI: 10.2174/138920213804999200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant hypercholesterolemia (ADH) is characterized by an isolated elevation of plasmatic low-density lipoprotein (LDL), which predisposes to premature coronary artery disease (CAD) and early death. ADH is largely due to mutations in the low-density lipoprotein receptor gene (LDLR), the apolipoprotein B-100 gene (APOB), or the proprotein convertase subtilisin/kexin type 9 (PCSK9). Early diagnosis and initiation of treatment can modify the disease progression and its outcomes. Therefore, cascade screening protocol with a combination of plasmatic lipid measurements and DNA testing is used to identify relatives of index cases with a clinical diagnosis of ADH. In Tunisia, an attenuated phenotypic expression of ADH was previously reported, indicating that the establishment of a special screening protocol is necessary for this population.
Collapse
Affiliation(s)
- Awatef Jelassi
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine, Monastir; Tunisia
| | | | | | | | | | | |
Collapse
|
10
|
Jelassi A, Slimani A, Rabès JP, Jguirim I, Abifadel M, Boileau C, Najah M, M'rabet S, Mzid J, Slimane MN, Varret M. Genomic characterization of two deletions in the LDLR gene in Tunisian patients with familial hypercholesterolemia. Clin Chim Acta 2012; 414:146-51. [DOI: 10.1016/j.cca.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/31/2012] [Accepted: 08/04/2012] [Indexed: 12/20/2022]
|
11
|
Slimani A, Jelassi A, Jguirim I, Najah M, Rebhi L, Omezzine A, Maatouk F, Hamda KB, Kacem M, Rabès JP, Abifadel M, Boileau C, Rouis M, Slimane MN, Varret M. Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients. Atherosclerosis 2012; 222:158-66. [PMID: 22417841 DOI: 10.1016/j.atherosclerosis.2012.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Autosomal dominant hypercholesterolemia (ADH) is commonly caused by mutations in the low-density lipoprotein (LDL) receptor gene (LDLR), in the apolipoprotein B-100 gene (APOB), or in the proprotein convertase subtilisin kexine 9 gene (PCSK9). ADH subjects carrying a mutation in LDLR present highly variable plasma LDL-cholesterol (LDL-C). This variability might be due to environmental factors or the effect of some modifying genes such as PCSK9 and APOE. AIMS We investigated the molecular basis of thirteen Tunisian ADH families and attempted to determine the impact of PCSK9 and APOE gene variations on LDL-cholesterol levels and on the variable phenotypic expression of the disease. METHODS AND RESULTS Fifty six subjects were screened for mutations in the LDLR gene through direct sequencing. The causative mutation was found to segregate with the disease in each family and a new frameshift mutation, p.Met767CysfsX21, was identified in one family. The distribution of total- and LDL-cholesterol levels, adjusted for age and gender, among homozygous and heterozygous ADH patients varied widely. Within seven families, nine subjects presented low LDL-cholesterol levels despite carrying a mutation in the LDLR gene. To identify the molecular actors underlying this phenotypic variability, the PCSK9 gene was screened using direct sequencing and/or enzymatic restriction analysis, and the apo E genotypes were determined. A new missense variation (p.Pro174Ser) in the PCSK9 gene was identified and characterized as a new putative loss-of-function mutation. CONCLUSION Genetic variations in PCSK9 and APOE genes could explain only part of the variability observed in the phenotypic expression in Tunisian ADH patients carrying mutations in the LDLR gene. Other genetic variants and environmental factors very probably act to fully explain this phenotypic variability.
Collapse
Affiliation(s)
- Afef Slimani
- Research Unit of Genetic and Biological Factors of Atherosclerosis, Faculty of Medicine, Monastir 5000, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shawar SM, Al-Drees MA, Ramadan AR, Ali NH, Alfadhli SM. The Arabic allele: a single base pair substitution activates a 10-base downstream cryptic splice acceptor site in exon 12 of LDLR and severely decreases LDLR expression in two unrelated Arab families with familial hypercholesterolemia. Atherosclerosis 2011; 220:429-36. [PMID: 22129472 DOI: 10.1016/j.atherosclerosis.2011.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/14/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
Abstract
Familial hypercholesterolemia (FH) is a monogenic autosomal dominant disorder caused by defects in LDLR. Few reports describe FH mutations among Arabs. We describe a mutation in LDLR of two unrelated Arab families. We investigated 19 patients using DNA sequencing, RFLP, and real-time (RT) PCR. DNA sequencing showed a base pair substitution (c.1706-2 A>T) in the splice acceptor site of LDLR intron 11. Our results were confirmed by RFLP on 2% agarose gel. In silico analysis predicted a new cryptic splice site downstream of the original position generating a 10-base deletion from the beginning of exon 12; (c.1706-1715del.ATCTCCTCAG). cDNA sequencing of exon 12 confirmed the computational analysis. The deletion was visualized on 4% agarose gel. The deletion generates a frameshift and a premature termination codon (c.1991-1993; p.(Asp569Valfs*93). RT-PCR revealed that LDLR mRNA is 9.3%±6.5 and 17.9%±8.0 for FH homozygote and heterozygote individuals respectively, compared to a healthy family control. We predict a class II LDLR mutation that leads to a truncated receptor missing exons 14-18. We called this mutation "the Arabic allele". We expect a significant contribution of this mutation to the prevalence of FH among Arabs. Also, we propose that the severe down regulation of LDLR mRNA expression is due to nonsense-mediated-decay.
Collapse
Affiliation(s)
- Said M Shawar
- Biotechnology Program, Arabian Gulf University, Manama, Bahrain.
| | | | | | | | | |
Collapse
|
13
|
[Association between variants of lipoprotein lipase and coronary heart disease in a Tunisian population]. PATHOLOGIE-BIOLOGIE 2011; 60:180-4. [PMID: 21621348 DOI: 10.1016/j.patbio.2011.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 04/08/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Coronary artery disease (CAD) is a complex multifactorial disease due to the interaction of multiple genes variations and environmental factors. Genetic variants of lipoprotein lipase (LPL), a key enzyme in the hydrolysis of triglyceride rich particles, may contribute to CAD. We analysed here the frequency of LPL variants (p.Asp9Asn, p.Asn291Ser and p.Ser447X) in a Tunisian population as well as their association with circulating lipid level and risk of CAD. PATIENTS AND METHODS LPL variations were investigated by PCR-RFLP and lipid parameters were measured in 135 patients and 109 controls. RESULTS The frequency of the p.Asp9Asn variation was 10.37% in CAD patients versus 3.66% in controls. The frequency for the p.Ser447X variation was 8.8% in CAD patients versus 13.7% in controls. There was no significant association between these two variants and CAD. The p.Asn291Ser mutation variation was absent in this population. In healthy subjects, heterozygote carriers of the p.Asp9Asn substitution had a significant increase level of total cholesterol (4.2±0.9mmol/L vs 5.6±1.2mmol/L; P=0.01) and a decreased level of HDL-cholesterol (1.36±0.3mmol/L vs 0.93±0.1mmol/L; P=0.045). CONCLUSION There was no significant association between genetic variants of the LPL gene and CAD in this Tunisian population. The very low frequency of the p.Asn291Ser variation may be an ethnic specificity of Tunisians.
Collapse
|
14
|
|
15
|
Jelassi A, Slimani A, Jguirim I, Najah M, Maatouk F, Varret M, Slimane MN. Effect of a splice site mutation in LDLR gene and two variations in PCSK9 gene in Tunisian families with familial hypercholesterolaemia. Ann Clin Biochem 2010; 48:83-6. [DOI: 10.1258/acb.2010.010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autosomal dominant hypercholesterolaemia (ADH) is due to defects in the LDL receptor gene ( LDLR), in the apolipoprotein B-100 gene ( APOB) or in the proprotein convertase subtilisin/kexin type 9 gene ( PCSK9). The aim of this study was to identify and to characterize mutations at the origin of ADH in two Tunisian families. We found three genomic variations: (1) c.1845 + 1G > A, a splice site mutation in the LDLR gene and (2) two variations in the PCSK9 gene (p.Phe515Leu and p.Gly670Glu) that were both reported to be associated with high LDL-C levels. These results enlarge the spectrum of ADH-causative LDLR and PCSK9 variations in Tunisia. Our observations indicate that missense variations in the PCSK9 gene do not influence the clinical phenotype of ADH patients carrying a mutation in the LDLR gene.
Collapse
Affiliation(s)
- A Jelassi
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine
| | - A Slimani
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine
| | - I Jguirim
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine
| | - M Najah
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine
| | - F Maatouk
- Department of Cardiovascular Disease, Fattouma Bourguiba Hospital, Monastir, Tunisia
| | - M Varret
- INSERM U781, Hopital Necker, Universtié Paris Descartes, France
| | - M N Slimane
- Research Unit of Genetic and Biologic Factors of Atherosclerosis, Faculty of Medicine
| |
Collapse
|
16
|
Current world literature. Curr Opin Lipidol 2010; 21:148-52. [PMID: 20616627 DOI: 10.1097/mol.0b013e3283390e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jelassi A, Slimani A, Jguirim I, Najah M, Abid A, Boughamoura L, Mzid J, Fkih M, Maatouk F, Rouis M, Varret M, Slimane MN. Moderate phenotypic expression of familial hypercholesterolemia in Tunisia. Clin Chim Acta 2010; 411:735-8. [PMID: 20144596 DOI: 10.1016/j.cca.2010.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Autosomal Dominant Hypercholesterolemia (ADH) is an autosomal dominant disease caused by mutations in the low density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Xanthomas and coronary heart diseases (CHD) at an early age are the major clinical manifestations of the disease. METHODS 16 families with familial hypercholesterolemia from different regions in Tunisia participated in the study. Mutations within the LDLR gene were screened through DNA sequencing. Lipids values were measured by standard enzymatic methods. RESULTS We present here thirty five homozygotes and fifty six heterozygotes. Homozygotes presented extensive xanthomatosis, variable clinical manifestations of CHD, and total cholesterol levels in males and females of 17.26+/-4.18 and 17.64+/-2.59 mmol/L respectively. HDL-cholesterol levels were 0.62+/-0.24 and 1.00+/-0.61 mmol/L for males and females, respectively. None of the heterozygotes had tendon xanthomas (except for one female aged 62), eight had corneal arcus, and nine developed CHD mean between 46 and 88 years old. Total cholesterol levels in males and females ranged from 4.60 to 8.90 and from 4.30 to 10.50 mmol/L, respectively. CONCLUSION Tunisian FH heterozygotes are characterized by a moderate clinical and biological expression of the disease.
Collapse
Affiliation(s)
- Awatef Jelassi
- Research Unit of Genetic and Biological Factors of Atherosclerosis, Faculty of Medicine, Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|