1
|
BMSCs overexpressed ISL1 reduces the apoptosis of islet cells through ANLN carrying exosome, INHBA, and caffeine. Cell Mol Life Sci 2022; 79:538. [DOI: 10.1007/s00018-022-04571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
|
2
|
Ma Q, Yang F, Mackintosh C, Jayani RS, Oh S, Jin C, Nair SJ, Merkurjev D, Ma W, Allen S, Wang D, Almenar-Queralt A, Garcia-Bassets I. Super-Enhancer Redistribution as a Mechanism of Broad Gene Dysregulation in Repeatedly Drug-Treated Cancer Cells. Cell Rep 2021; 31:107532. [PMID: 32320655 DOI: 10.1016/j.celrep.2020.107532] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.
Collapse
Affiliation(s)
- Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranveer Singh Jayani
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soohwan Oh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sreejith Janardhanan Nair
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wubin Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Allen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Gorabi AM, Bianconi V, Pirro M, Banach M, Sahebkar A. Regulation of cardiac stem cells by microRNAs: State-of-the-art. Biomed Pharmacother 2019; 120:109447. [PMID: 31580971 DOI: 10.1016/j.biopha.2019.109447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
Stem cells have a therapeutic potential in various medical conditions. In cases without sufficient response to conventional drug treatments, stem cells represent a next generation therapeutic strategy in cardiovascular diseases. Cardiac stem cells (CSCs), among a wide variety of stem cell sources, have been identified as a valid option for stem cell-based therapy in cardiovascular diseases. CSCs mainly act as a cell source to supply the physiological need for cardiovascular cells. However, they have been demonstrated to reproduce the myocardial cells under pathological settings. Despite their roles and functions have somewhat been clarified, molecular pathways underlying the regulatory mechanisms of CSCs are still not fully elucidated. Several studies have recently shown that different microRNAs (miRNAs) play a substantial role in regulating and controlling both the physiological and pathological proliferation and differentiation of stem cells. MiRNAs are small non-coding RNA molecules that regulate gene expression and may undergo aberrant expression levels during pathological conditions. Understanding the way through which miRNAs regulate CSC behavior may open up new horizons in modulating these cells in vitro to devise sophisticated approaches for treating patients with cardiovascular diseases. In this review article, we tried to discuss available evidence about the role of miRNAs in regulating CSCs.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Xiang Q, Liao Y, Chao H, Huang W, Liu J, Chen H, Hong D, Zou Z, Xiang AP, Li W. ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model. Stem Cell Res Ther 2018; 9:51. [PMID: 29482621 PMCID: PMC5828309 DOI: 10.1186/s13287-018-0803-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed as a marker for cardiovascular progenitor cells. This study investigated whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) improves myocardial infarction (MI) treatment outcomes. METHODS The lentiviral vector containing the human elongation factor 1α promoter, which drives the expression of ISL1 (EF1α-ISL1), was constructed using the Multisite Gateway System and used to transduce hMSCs. Flow cytometry, immunofluorescence, Western blotting, TUNEL assay, and RNA sequencing were performed to evaluate the function of ISL1-overexpressing hMSCs (ISL1-hMSCs). RESULTS The in vivo results showed that transplantation of ISL1-hMSCs improved cardiac function in a rat model of MI. Left ventricle ejection fraction and fractional shortening were greater in post-MI hearts after 4 weeks of treatment with ISL1-hMSCs compared with control hMSCs or phosphate-buffered saline. We also found that ISL1 overexpression increased angiogenesis and decreased apoptosis and inflammation. The greater potential of ISL1-hMSCs may be attributable to an increased number of surviving cells after transplantation. Conditioned medium from ISL1-hMSCs decreased the apoptotic effect of H2O2 on the cardiomyocyte cell line H9c2. To clarify the molecular basis of this finding, we employed RNA sequencing to compare the apoptotic-related gene expression profiles of control hMSCs and ISL1-hMSCs. The results showed that insulin-like growth factor binding protein 3 (IGFBP3) was the only gene in ISL1-hMSCs with a RPKM value higher than 100 and that the difference fold-change between ISL1-hMSCs and control hMSCs was greater than 3, suggesting that IGFBP3 might play an important role in the anti-apoptosis effect of ISL1-hMSCs through paracrine effects. Furthermore, the expression of IGFBP3 in the conditioned medium from ISL1-hMSCs was almost fourfold greater than that in conditioned medium from control hMSCs. Moreover, the IGFBP3 neutralization antibody reversed the apoptotic effect of ISL1-hMSCs-CM. CONCLUSIONS These results suggest that overexpression of ISL1 in hMSCs promotes cell survival in a model of MI and enhances their paracrine function to protect cardiomyocytes, which may be mediated through IGFBP3. ISL1 overexpression in hMSCs may represent a novel strategy for enhancing the effectiveness of stem cell therapy after MI.
Collapse
Affiliation(s)
- Qiuling Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hua Chao
- Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jia Liu
- Department of Cardiology, the Red Cross hospital of Guangzhou City, the Fourth Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Haixuan Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dongxi Hong
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhengwei Zou
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China.,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China. .,Zhongshan Medical School, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
The Role of MicroRNAs in Cardiac Stem Cells. Stem Cells Int 2015; 2015:194894. [PMID: 25802528 PMCID: PMC4329769 DOI: 10.1155/2015/194894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.
Collapse
|
7
|
Wnt-promoted Isl1 expression through a novel TCF/LEF1 binding site and H3K9 acetylation in early stages of cardiomyocyte differentiation of P19CL6 cells. Mol Cell Biochem 2014; 391:183-92. [DOI: 10.1007/s11010-014-2001-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/21/2014] [Indexed: 11/26/2022]
|
8
|
Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 2013; 23:1172-86. [PMID: 24018375 PMCID: PMC3790234 DOI: 10.1038/cr.2013.112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022] Open
Abstract
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.
Collapse
|
9
|
Roy R, Brodarac A, Kukucka M, Kurtz A, Becher PM, Jülke K, Choi YH, Pinzur L, Chajut A, Tschöpe C, Stamm C. Cardioprotection by placenta-derived stromal cells in a murine myocardial infarction model. J Surg Res 2013; 185:70-83. [PMID: 23830369 DOI: 10.1016/j.jss.2013.05.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Autologous cells for cell therapy of ischemic cardiomyopathy often display age- and disease-related functional impairment, whereas an allogenic immunotolerant cell product would allow off-the-shelf application of uncompromised donor cells. We investigated the cardiac regeneration potential of a novel, clinical-grade placenta-derived human stromal cell product (PLX-PAD). METHODS PLX-PAD cells derived from human donor placentas and expanded in a three-dimensional bioreactor system were tested for surface marker expression, proangiogenic, anti-inflammatory, and immunomodulatory properties in vitro. In BALB/C mice, the left anterior descending artery was ligated and PLX-PAD cells (n = 10) or vehicle (n = 10) were injected in the infarct border zone. Four weeks later, heart function was analyzed by two-dimensional and M-mode echocardiography. Scar size, microvessel density, extracellular matrix composition, myocyte apoptosis, and PLX-PAD cell retention were studied by histology. RESULTS In vitro, PLX-PAD cells displayed both proangiogenesis and anti-inflammatory properties, represented by the secretion of both vascular endothelial growth factor and angiopoietin-1 that was upregulated by hypoxia, as well as by the capacity to suppress T-cell proliferation and augment IL-10 secretion when co-cultured with peripheral blood mononuclear cells. Compared with control mice, PLX-PAD-treated hearts had better contractile function, smaller infarct size, greater regional left ventricular wall thickness, and less apoptosis after 4 wk. PLX-PAD stimulated both angiogenesis and arteriogenesis in the infarct border zone, and periostin expression was upregulated in PLX-PAD-treated hearts. CONCLUSIONS Clinical-grade PLX-PAD cells exert beneficial effects on ischemic myocardium that are associated with improved contractile function, and may be suitable for further evaluation aiming at clinical pilot trials of cardiac cell therapy.
Collapse
Affiliation(s)
- Rajika Roy
- Berlin-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fadini GP. Developmental cardiovascular biology meets regenerative medicine at Islet-1. Atherosclerosis 2012; 223:282-3. [PMID: 22727190 DOI: 10.1016/j.atherosclerosis.2012.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani, 2., 35100 Padova, Italy. ,
| |
Collapse
|