1
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Nuzzo A, Saha S, Berg E, Jayawickreme C, Tocker J, Brown JR. Expanding the drug discovery space with predicted metabolite-target interactions. Commun Biol 2021; 4:288. [PMID: 33674782 PMCID: PMC7935942 DOI: 10.1038/s42003-021-01822-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolites produced in the human gut are known modulators of host immunity. However, large-scale identification of metabolite-host receptor interactions remains a daunting challenge. Here, we employed computational approaches to identify 983 potential metabolite-target interactions using the Inflammatory Bowel Disease (IBD) cohort dataset of the Human Microbiome Project 2 (HMP2). Using a consensus of multiple machine learning methods, we ranked metabolites based on importance to IBD, followed by virtual ligand-based screening to identify possible human targets and adding evidence from compound assay, differential gene expression, pathway enrichment, and genome-wide association studies. We confirmed known metabolite-target pairs such as nicotinic acid-GPR109a or linoleoyl ethanolamide-GPR119 and inferred interactions of interest including oleanolic acid-GABRG2 and alpha-CEHC-THRB. Eleven metabolites were tested for bioactivity in vitro using human primary cell-types. By expanding the universe of possible microbial metabolite-host protein interactions, we provide multiple drug targets for potential immune-therapies.
Collapse
Affiliation(s)
- Andrea Nuzzo
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA.
| | - Somdutta Saha
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
- EMD Serono Research & Development Institute, Inc. 45A Middlesex Turnpike, Billerica, MA, 01821, USA
| | - Ellen Berg
- Eurofins Discovery, 111 Anza Boulevard, Burlingame, CA, 94010, USA
| | - Channa Jayawickreme
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
| | - Joel Tocker
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA
| | - James R Brown
- GlaxoSmithKline Pharma R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426-0989, USA.
- Kaleido Biosciences, Inc. 65 Hayden Avenue, Lexington, MA, 02421, USA.
| |
Collapse
|
3
|
Wang J, Cao Y, Fu S, Li W, Ge Y, Cheng J, Liu J. Niacin inhibits the synthesis of milk fat in BMECs through the GPR109A-mediated downstream signalling pathway. Life Sci 2020; 260:118415. [PMID: 32918974 DOI: 10.1016/j.lfs.2020.118415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
AIMS Previous studies have shown the effect of niacin on dairy cow production, but no study on the role of niacin in milk fat synthesis has been performed. Therefore, the purpose of this study was to examine the effect of niacin on milk fat synthesis and its specific mechanism in BMECs. MAIN METHODS In this study, 0.5 mM niacin, a GPR109A-inhibiting plasmid, and an AMPK inhibitor were added to BMECs. Milk fat was measured by a triglyceride kit and BODIPY staining. The protein expression of GPR109A, FASN, SREBP1, AMPK, ACC, mTOR and S6K was measured by Western blotting. The gene expression of GPR109A, FASN, and SREBP1 was analysed by RT-PCR. KEY FINDINGS Our results showed that 0.5 mM niacin could significantly reduce milk fat synthesis in BMECs and activate the AMPK/ACC signalling pathway by stimulating GPR109A, reducing the protein expression of p-mTOR and p-S6K, and reducing the expression of SREBP1 and FASN in BMECs. SIGNIFICANCE The present study clarified the effect of niacin on milk fat synthesis. The results show that niacin inhibits the synthesis of milk fat in BMECs through the downstream signalling pathway mediated by GPR109A. The function of niacin has been expanded, and knowledge of the new mechanism and signalling pathway will help improve the biosynthesis of milk fat.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Miyazawa Y, Yamaguchi T, Yamaguchi M, Tago K, Tamura A, Sugiyama D, Aburatani T, Nishizawa T, Kurikawa N, Kono K. Discovery of novel pyrrole derivatives as potent agonists for the niacin receptor GPR109A. Bioorg Med Chem Lett 2020; 30:127105. [PMID: 32199732 DOI: 10.1016/j.bmcl.2020.127105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/23/2020] [Accepted: 03/08/2020] [Indexed: 11/27/2022]
Abstract
Novel pyrrole derivatives were discovered as potent agonists of the niacin receptor, GPR109A. During the derivatization, compound 16 was found to be effective both in vitro and in vivo. The compound 16 exhibited a significant reduction of the non-esterified fatty acid in human GPR109A transgenic rats, and the duration of its in vivo efficacy was much longer than niacin.
Collapse
Affiliation(s)
- Yuriko Miyazawa
- External Affairs Department, Daiichi Sankyo Co., Ltd., Nihonbashi-honcho, Chuo-ku, Tokyo 103-8426, Japan.
| | - Takahiro Yamaguchi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Mitsuhiro Yamaguchi
- R&D Planning & Management Department, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Keiko Tago
- Medicinal Chemistry Research Laboratories, Daiichi Sankyo RD Novare Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akihiro Tamura
- Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Daisuke Sugiyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takahide Aburatani
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomohiro Nishizawa
- External Affairs Department, Daiichi Sankyo Co., Ltd., Nihonbashi-honcho, Chuo-ku, Tokyo 103-8426, Japan
| | - Nobuya Kurikawa
- Specialty Medicine Research Laboratories II, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Keita Kono
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
5
|
Evidence for Toxic Advanced Glycation End-Products Generated in the Normal Rat Liver. Nutrients 2019; 11:nu11071612. [PMID: 31315223 PMCID: PMC6683103 DOI: 10.3390/nu11071612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose/fructose in beverages/foods containing high-fructose corn syrup (HFCS) are metabolized to glyceraldehyde (GA) in the liver. We previously reported that GA-derived advanced glycation end-products (toxic AGEs, TAGE) are generated and may induce the onset/progression of non-alcoholic fatty liver disease (NAFLD). We revealed that the generation of TAGE in the liver and serum TAGE levels were higher in NAFLD patients than in healthy humans. Although we propose the intracellular generation of TAGE in the normal liver, there is currently no evidence to support this, and the levels of TAGE produced have not yet been measured. In the present study, male Wister/ST rats that drank normal water or 10% HFCS 55 (HFCS beverage) were maintained for 13 weeks, and serum TAGE levels and intracellular TAGE levels in the liver were analyzed. Rats in the HFCS group drank 127.4 mL of the HFCS beverage each day. Serum TAGE levels and intracellular TAGE levels in the liver both increased in the HFCS group. A positive correlation was observed between intracellular TAGE levels in the liver and serum TAGE levels. On the other hand, in male Wister/ST rats that drank Lactobacillus beverage for 12 weeks-a commercial drink that contains glucose, fructose, and sucrose- no increases were observed in intracellular TAGE or serum TAGE levels. Intracellular TAGE were generated in the normal rat liver, and their production was promoted by HFCS, which may increase the risk of NAFLD.
Collapse
|