1
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
2
|
Dussault S, Desjarlais M, Raguema N, Boilard E, Chemtob S, Rivard A. Selective Enrichment of Angiomirs in Extracellular Vesicles Released from Ischemic Skeletal Muscles: Potential Role in Angiogenesis and Neovascularization. Cells 2024; 13:1243. [PMID: 39120274 PMCID: PMC11312235 DOI: 10.3390/cells13151243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRs) regulate physiological and pathological processes, including ischemia-induced angiogenesis and neovascularization. They can be transferred between cells by extracellular vesicles (EVs). However, the specific miRs that are packaged in EVs released from skeletal muscles, and how this process is modulated by ischemia, remain to be determined. We used a mouse model of hindlimb ischemia and next generation sequencing (NGS) to perform a complete profiling of miR expression and determine the effect of ischemia in skeletal muscles, and in EVs of different sizes (microvesicles (MVs) and exosomes) released from these muscles. Ischemia significantly modulated miR expression in whole muscles and EVs, increasing the levels of several miRs that can have pro-angiogenic effects (angiomiRs). We found that specific angiomiRs are selectively enriched in MVs and/or exosomes in response to ischemia. In silico approaches indicate that these miRs modulate pathways that play key roles in angiogenesis and neovascularization, including HIF1/VEGF signaling, regulation of actin cytoskeleton and focal adhesion, NOTCH, PI3K/AKT, RAS/MAPK, JAK/STAT, TGFb/SMAD signaling and the NO/cGMP/PKG pathway. Thus, we show for the first time that angiomiRs are selectively enriched in MVs and exosomes released from ischemic muscles. These angiomiRs could be targeted in order to improve the angiogenic function of EVs for potential novel therapeutic applications in patients with severe ischemic vascular diseases.
Collapse
Affiliation(s)
- Sylvie Dussault
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| | - Michel Desjarlais
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; (M.D.); (S.C.)
| | - Nozha Raguema
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; (M.D.); (S.C.)
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| |
Collapse
|
3
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Wang C, Cheng H, Yan F, Zhang H, Zhang J, Li C, Zhao M, Shi D, Xiong H. MicroRNA-146b protects kidney injury during urinary tract infections by modulating macrophage polarization. mBio 2023; 14:e0209423. [PMID: 37909731 PMCID: PMC10870822 DOI: 10.1128/mbio.02094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Kidney injury during acute urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) is an important public health problem. However, how kidney injury develops during UPEC infection is still unclear. Although antibiotic therapy is currently an effective treatment for UTI, it cannot avoid kidney injury. MicroRNAs have gained extensive attention as essential molecules capable of regulating the autoimmune response. Among these, microRNA-146b (miR-146b) is involved in regulating inflammatory responses. In the present study, we demonstrated that miR-146b played an essential role in the development of kidney injury during UTIs caused by UPEC. The results showed that miR-146b may suppress M1 macrophage polarization and alleviate acute kidney injury. Furthermore, the miR-146b activator, agomir, in order to upregulate miR-146b, was effective in treating kidney damage by inhibiting the activation of M1 macrophages. In conclusion, our findings elucidated the mechanisms by which miR-146b alleviated kidney injury induced by UTIs, shed new light on the relationship between microRNA and bacterial infection, and provided a novel therapeutic target for treating this common bacterial infection.
Collapse
Affiliation(s)
- Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hongyan Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dongmei Shi
- Department of Dermatology and Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Wu KL, Chen CL, Thi Nguyen MH, Tsai JC, Wang SC, Chiang WF, Hsiao PJ, Chan JS, Hou JJ, Ma N. MicroRNA regulators of vascular pathophysiology in chronic kidney disease. Clin Chim Acta 2023; 551:117610. [PMID: 37863246 DOI: 10.1016/j.cca.2023.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Coronary artery disease (CAD) is a severe comorbidity in chronic kidney disease (CKD) due to heavy calcification in the medial layer and inflamed plaques. Chronic inflammation, endothelial dysfunction and vascular calcification are major contributors that lead to artherosclerosis in CKD. The lack of specific symptoms and signs of CAD and decreased accuracy of noninvasive diagnostic tools result in delayed diagnosis leading to increased mortality. MicroRNAs (miRNAs) are post-transcriptional regulators present in various biofluids throughout the body. In the circulation, miRNAs have been reported to be encapsulated in extracellular vesicles and serve as stable messengers for crosstalk among cells. miRNAs are involved in pathophysiologic mechanisms including CAD and can potentially be extended from basic research to clinical translational practice.
Collapse
Affiliation(s)
- Kun-Lin Wu
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Lung Chen
- Division of Nephrology, Department of Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Mai-Huong Thi Nguyen
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Jen-Chieh Tsai
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sun-Chong Wang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Wen-Fang Chiang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ju Jung Hou
- Kaohsiung Medical University Hospital, Department of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Ruknudin P, Nazari AR, Wirth M, Lahaie I, Bajon E, Rivard A, Chemtob S, Desjarlais M. Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced Retinopathy. Int J Mol Sci 2023; 24:13185. [PMID: 37685993 PMCID: PMC10488245 DOI: 10.3390/ijms241713185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model.
Collapse
Affiliation(s)
- Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Ali Riza Nazari
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Maelle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Emmanuel Bajon
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H1T 2H2, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| |
Collapse
|
7
|
Margiana R, Alsaikhan F, Al-Awsi GRL, Patra I, Sivaraman R, Fadhil AA, Al-Baghdady HFA, Qasim MT, Hameed NM, Mustafa YF, Hosseini-Fard S. Functions and therapeutic interventions of non-coding RNAs associated with TLR signaling pathway in atherosclerosis. Cell Signal 2022; 100:110471. [PMID: 36122884 DOI: 10.1016/j.cellsig.2022.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, emerging data demonstrate that the toll-like receptor (TLR) signaling pathway plays an important role in the progression of inflammatory atherosclerosis. Indeed, dysregulated TLR signaling pathway could be a cornerstone of inflammation and atherosclerosis, which contributes to the development of cardiovascular diseases. It is interesting to note that this pathway is heavily controlled by several mechanisms, such as epigenetic factors in which the role of non-coding RNAs (ncRNAs), particularly microRNAs and long noncoding RNAs as well as circular RNAs in the pathogenesis of atherosclerosis has been well studied. Recent years have seen a significant surge in the amount of research exploring the interplay between ncRNAs and TLR signaling pathway downstream targets in the development of atherosclerosis; however, there is still considerable room for improvement in this field. The current study was designed to review underlying mechanisms of TLR signaling pathway and ncRNA interactions to shed light on therapeutic implications in patients with atherosclerosis.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Jakarta, Indonesia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | - Ramaswamy Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Arumbakkam, Chennai, India
| | | | | | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Mahdavi FS, Mardi S, Mohammadi S, Ansari S, Yaslianifard S, Fallah P, Mozhgani SH. MicroRNA-146: Biomarker and Mediator of Cardiovascular Disease. DISEASE MARKERS 2022; 2022:7767598. [PMID: 39281713 PMCID: PMC11401689 DOI: 10.1155/2022/7767598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/15/2022] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) are the prime cause of morbidity and mortality worldwide. Although noticeable progress has been made in the diagnosis, prognosis, and treatment, there is still a critical demand for new diagnostic biomarkers and novel therapeutic interventions to reduce this disease incidence. Many investigations have been conducted on the regulatory effects of microRNAs in cardiovascular diseases. miRNA circulating serum level changes are correlated with several CVDs. In addition, there is growing evidence representing the potential role of miRNAs as diagnostic biomarkers or potential therapeutic targets for CVD. Preliminary studies identified the prominent role of miR-146 in host defense, innate immunity, and different immunological diseases by regulating cytokine production and innate immunity modification in bacterial infections. However, more recently, it was also associated with CVD development. miR-146 has received much attention, with positive results in most studies. Research demonstrated the crucial role of this molecule in the pathogenesis of cardiac disease and related mechanisms. As a result, many potential applications of miR-146 are expected. In this paper, we provide an overview of recent studies highlighting the role of miR-146 in CVD, focusing on CAD (coronary artery disease), cardiomyopathy, and MI (myocardial infarction) in particular and discussing its current scientific state, and use a prognostic biomarker as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Sadat Mahdavi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Mardi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sareh Mohammadi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sarina Ansari
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Laboratory Science, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
9
|
Dhiflaoui A, Mahjoub S, Chayeb V, Achour B, Chouchen S, Abdennebi HB, Mahjoub T, Almawi WY. miR-146a, miR-196a2, miR-499, and miR-149 linked with susceptibility to acute lymphoblastic leukemia: A case-control study in Tunisia. Gene 2022; 834:146648. [PMID: 35690283 DOI: 10.1016/j.gene.2022.146648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are promising biomarkers of hematological malignancies, including acute lymphoblastic leukaemia (ALL). Recent studies revealed that miRNA single nucleotide polymorphisms (miR-SNP) modulate cancer risk by regulating various signaling pathways. However, their association with altered risk of ALL yielded inconsistent results. OBJECTIVE This study aims to investigate the association of four miR-SNPs with altered risk of ALL risk in Tunisian, the first on North African population. METHODS A retrospective case-control study exploring the association of miR-146a, miR-196a2, miR-499, and miR-149 SNPs in 126 ALL patients and 126 healthy controls. RESULTS Of the tested variants, significantly lower minor allele frequencies (MAF) of miR-146a C-allele and higher MAF frequency of miR-149 T-allele (P = 0.006) were seen in ALL cases. The association of miR-149 rs2292832 (Pc = 0.02), but not miR-146a rs2910164 (Pc = 0.11) persisted after correcting for multiple comparisons. Significantly reduced prevalence of miR-146a G/C genotype and higher frequency of miR-149 C/T genotype were seen in ALL cases vs. control subjects, which translated into negative association of miR-146a (rs2910164) with ALL according to the codominant and dominant models. Similarly, miR-149 (rs2292832) was positively associated with ALL according to the codominant and dominant genetic models. Three combinations comprising miR-146a/miR-196a2 GG vs CT + TT genotype combination, miR-146a/miR-499 GG vs TC + CC genotype combination, and miR-146a/miR-149 GG vs CT + TT genotype combination, were less frequent in ALL patients than in controls, and were negatively associated with the presence of ALL. CONCLUSION Our study suggests that miR-146a and miR-149 polymorphisms constitute biomarkers for personalized diagnosis of ALL.
Collapse
Affiliation(s)
- Amani Dhiflaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Sana Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Vera Chayeb
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Bechir Achour
- Department of Clinical Hematology, CHU Farhat Hached, Sousse, Tunisia
| | - Saoussen Chouchen
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Touhami Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Nazarbayev University School of Medicine, Nur-Sultan (Astana), Kazakhstan.
| |
Collapse
|
10
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
11
|
Hu J, Liu X, Chi J, Che K, Ma X, Qiu M, Fu Z, Wang Y, Wang Y, Wang W. Resveratrol Enhances Wound Healing in Type 1 Diabetes Mellitus by Promoting the Expression of Extracellular Vesicle-Carried MicroRNA-129 Derived from Mesenchymal Stem Cells. J Proteome Res 2022; 21:313-324. [PMID: 35076227 DOI: 10.1021/acs.jproteome.1c00248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent studies have shown the promotive effect of resveratrol on wound healing. This study aims to explore the underlying molecular mechanism of resveratrol in type 1 diabetes mellitus (T1DM) through microRNA (miR)-129-containing extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) based on in silico analysis. The rat model of T1DM was established by intraperitoneal injection of sodium citrate containing streptozotocin, and the wound was made around the deep fascia. Rat MSCs were isolated and treated with resveratrol (SRT501), and the corresponding EVs (SRT501-EVs) were isolated, where the expression of miR-129 was determined. By performing function experiments, the effect of SRT501-EVs and miR-129 on the biological functions of human umbilical vein endothelial cells (HUVECs) was determined. Finally, the binding relationship between miR-129 and tumor necrosis factor receptor-associated factor 6 (TRAF6) was also determined by the dual-luciferase reporter gene assay. miR-129 was shown as a candidate related to both resveratrol and wound healing in T1DM. SRT501-EVs promoted the skin wound healing of T1DM rats and also further improved the proliferative, migratory, and tube formation potentials of HUVECs. Resveratrol inhibited the expression of TRAF6 in HUVECs stimulated by MSC-conditioned medium and promoted the transfer of miR-129 via EVs, while TRAF6 was confirmed as a target gene of miR-129. Furthermore, inhibition of miR-129 attenuated the proangiogenic effect of resveratrol on HUVECs. Resveratrol exerts promotive role in wound healing in T1DM through downregulation of TRAF6 via MSC-EV-carried miR-129, suggesting a regulatory network involved in the wound healing process in T1DM.
Collapse
Affiliation(s)
- Jianxia Hu
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiaoyi Liu
- The Breast Diseases Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Jingwei Chi
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Kui Che
- The Laboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Xiaolong Ma
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Mingyue Qiu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Zhengju Fu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Yahao Wang
- Medical College, Qingdao University, Qingdao 266071, P. R. China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
12
|
Theofilis P, Oikonomou E, Vogiatzi G, Antonopoulos AS, Siasos G, Iliopoulos DC, Perrea D, Tsioufis C, Tousoulis D. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and meta-analysis of animal studies. Vascul Pharmacol 2021; 141:106906. [PMID: 34509635 DOI: 10.1016/j.vph.2021.106906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pro-angiogenic microRNA modulation is a potentially attractive approach in the management of peripheral artery disease (PAD). The aim of this systematic review and meta-analysis was to examine the impact of microRNAs involved in the process of angiogenesis on blood flow recovery following hind limb ischemia induction in animal models. METHODS A literature search was performed to identify studies testing the efficacy of microRNA treatment on animal models of hind limb ischemia. Following that, a meta-analysis of the included studies was executed with the primary outcome being the change in ischemic-to-normal hind limb perfusion ratio assessed via laser Doppler imaging. Moreover, risk of bias, sensitivity analysis and publication bias were evaluated. RESULTS Studies evaluation led to the inclusion of 18 studies whose meta-analysis suggested that microRNA treatment resulted in improved ischemic hind limb perfusion 7 [standardized mean difference (SMD): 0.93, 95% CI 0.49-1.38], 14 (SMD: 1.31, 95% CI 0.78-1.84), and 21 days (SMD: 1.13, 95% CI 0.59-1.66) after hind limb ischemia induction. Moderate-to-substantial heterogeneity and possible publication bias were noted. Risk of bias was unclear despite the balanced baseline animal characteristics. CONCLUSION The present meta-analysis suggests that pro-angiogenic modulation of microRNAs accelerates vascular perfusion recovery in animal models of acute hind limb ischemia. Further studies on animal models with similar characteristics to that of PAD patients are warranted to translate those findings in human PAD setting.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece; 3rd Cardiology Department, Sotiria Regional Hospital for Chest Diseases, University of Athens Medical School, Athens, Greece.
| | - Georgia Vogiatzi
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece; 3rd Cardiology Department, Sotiria Regional Hospital for Chest Diseases, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece; 3rd Cardiology Department, Sotiria Regional Hospital for Chest Diseases, University of Athens Medical School, Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Despoina Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", University of Athens Medical School, Athens, Greece
| | - Costas Tsioufis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
13
|
Desjarlais M, Ruknudin P, Wirth M, Lahaie I, Dabouz R, Rivera JC, Habelrih T, Omri S, Hardy P, Rivard A, Chemtob S. Tyrosine-Protein Phosphatase Non-receptor Type 9 (PTPN9) Negatively Regulates the Paracrine Vasoprotective Activity of Bone-Marrow Derived Pro-angiogenic Cells: Impact on Vascular Degeneration in Oxygen-Induced Retinopathy. Front Cell Dev Biol 2021; 9:679906. [PMID: 34124069 PMCID: PMC8194284 DOI: 10.3389/fcell.2021.679906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Insufficient post-ischemic neovascularization is an initial key step in the pathogenesis of Oxygen-Induced Retinopathy (OIR). During neovascularization, pro-angiogenic cells (PACs) are mobilized from the bone marrow and integrate into ischemic tissues to promote angiogenesis. However, the modulation of PAC paracrine activity during OIR and the specific mechanisms involved remain to be explored. Because Tyrosine-protein phosphatase non-receptor type 9 (PTPN9) is reported to be a negative regulator of stem cell differentiation and angiogenesis signaling, we investigated its effect on PAC activity in the context of OIR. Methods and Results In a rat model of OIR, higher levels of PTPN9 in the retina and in bone marrow derived PACs are associated with retinal avascular areas, lower levels of the mobilization factor SDF-1 and decreased number of CD34+/CD117+/CD133+ PACs. PACs exposed ex vivo to hyperoxia display increased PTPN9 expression, which is associated with impaired ability of PAC secretome to promote angiogenesis ex vivo (choroidal vascular sprouting) and in vitro (endothelial cell tubule formation) compared to the secretome of PACs maintained in normoxia. Suppression of PTPN9 (using siRNA) increases VEGF and SDF-1 expression to normalize PAC secretome during hyperoxia, leading to restored angiogenic ability of PAC secretome. Moreover, endothelial cells exposed to the secretome of siPTPN9-treated PACs expressed increased levels of activated form of VEGF receptor 2 (VEGFR2). In the rat model of OIR, intravitreal injection of secretome from siPTPN9-treated PACs significantly reduced retinal vaso-obliteration; this was associated with higher retinal levels of VEGF/SDF-1, and increased recruitment of PACs (CD34+ cells) to the retinal and choroidal vessels. Conclusion Our results suggest that hyperoxia alters the paracrine proangiogenic activity of BM-PACs by inducing PTPN9, which can contribute to impair post-ischemic revascularization in the context of OIR. Targeting PTPN9 restores PAC angiogenic properties, and provide a new target for vessel integrity in ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Tiffany Habelrih
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
14
|
Liang Y, Wang M, Wang C, Liu Y, Naruse K, Takahashi K. The Mechanisms of the Development of Atherosclerosis in Prediabetes. Int J Mol Sci 2021; 22:ijms22084108. [PMID: 33921168 PMCID: PMC8071517 DOI: 10.3390/ijms22084108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Lifestyle changes, such as overeating and underexercising, can increase the risk of prediabetes. Diabetes is one of the leading causes of atherosclerosis, and recently it became clear that the pathophysiology of atherosclerosis progresses even before the onset of diabetic symptoms. In addition to changes in platelets and leukocytes in the hyperglycemic state and damage to vascular endothelial cells, extracellular vesicles and microRNAs were found to be involved in the progression of prediabetes atherosclerosis. This review discusses the cellular and molecular mechanisms of these processes, with an intention to enable a comprehensive understanding of the pathophysiology of prediabetes and atherosclerosis.
Collapse
|
15
|
Pérez-Sánchez L, Patiño-Trives AM, Aguirre-Zamorano MÁ, Luque-Tévar M, Ábalos-Aguilera MC, Arias-de la Rosa I, Seguí P, Velasco-Gimena F, Barbarroja N, Escudero-Contreras A, Collantes-Estévez E, Pérez-Sánchez C, López-Pedrera C. Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses. Arterioscler Thromb Vasc Biol 2020; 41:865-877. [PMID: 33356391 DOI: 10.1161/atvbaha.120.315346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to characterize distinctive clinical antiphospholipid syndrome phenotypes and identify novel microRNA (miRNA)-mRNA-intracellular signaling regulatory networks in monocytes linked to cardiovascular disease. Approach and Results: Microarray analysis in antiphospholipid syndrome monocytes revealed 547 differentially expressed genes, mainly involved in inflammatory, cardiovascular, and reproductive disorders. Besides, this approach identified several genes related to inflammatory, renal, and dermatologic diseases. Functional analyses further demonstrated phosphorylation of intracellular kinases related to thrombosis and immune-mediated chronic inflammation. miRNA profiling showed altered expression of 22 miRNAs, enriched in pathways related to immune functions, cardiovascular disease, and autoimmune-associated pathologies. Unbiased integrated mRNA-miRNA analysis identified a signature of 9 miRNAs as potential modulators of 17 interconnected genes related to cardiovascular disease. The altered expression of that miRNA-mRNA signature was proven to be stable along time and distinctive of nonautoimmune thrombotic patients. Transfection studies and luciferase assays established the relationship between specific miRNAs and their identified target genes and proteins, along with their involvement in the regulation of monocytes procoagulant activity and cell adhesion. Correlation analyses showed relationship among altered miRNAs and their interconnected genes with aPL (antiphospholipid antibodies)-titers, along with microvascular endothelial dysfunction. In vitro studies demonstrated modulation in healthy monocytes by IgG-aPLs of several genes/miRNAs, which further intermediated downstream effects on endothelial function. The identified transcriptomic signature allowed the unsupervised division of three clusters of patients with antiphospholipid syndrome showing distinctive clinical profiles, mainly associated with their prothrombotic risk (thrombosis, autoantibody profile, cardiovascular risk factors, and atherosclerosis). CONCLUSIONS Extensive molecular profiling of monocytes in patients with primary antiphospholipid syndrome might help to identify distinctive clinical phenotypes, thus enabling new patients' tailored treatments.
Collapse
Affiliation(s)
- Laura Pérez-Sánchez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Alejandra M Patiño-Trives
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Ángeles Aguirre-Zamorano
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - María Luque-Tévar
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - M Carmen Ábalos-Aguilera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Iván Arias-de la Rosa
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Pedro Seguí
- Radiology Service (P.S.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Francisco Velasco-Gimena
- Haematology Service (F.V.-G.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain (N.B.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Eduardo Collantes-Estévez
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| | - Carlos Pérez-Sánchez
- Deparment of Medicine, University of Cambridge, School of Clinical Medicine, Addenbroke's Hospital, Cambridge Institute for Medical Research, United Kingdom (C.P.-S.)
| | - Chary López-Pedrera
- Rheumatology Service (L.P.-S., A.M.P.-T., M.A.A.-Z., M.L.-T., M.C.A.-A., I.A.-d.l.R., N.B., A.E.-C., E.C.-E., C.L.-P.), Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Spain
| |
Collapse
|
16
|
Wang H, Sugimoto K, Lu H, Yang WY, Liu JY, Yang HY, Song YB, Yan D, Zou TY, Shen S. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3p-mediated inhibition of FOSL2. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:577-591. [PMID: 33510945 PMCID: PMC7815465 DOI: 10.1016/j.omtn.2020.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
We intended to characterize functional relevance of microRNA (miR)-224-3p in endothelial cell (EC) apoptosis and reactive oxygen species (ROS) accumulation in atherosclerosis, considering also the integral involvement of histone deacetylase 1 (HDAC1)-mediated hypoxia-inducible factor-1α (HIF1α) deacetylation. The binding affinity between miR-224-3p and Fos-like antigen 2 (FOSL2) was predicted and validated. Furthermore, we manipulated miR-224-3p, FOSL2, HDAC1, and HIF1α expression in oxidized low-density lipoprotein (ox-LDL)-induced ECs, aiming to clarify their effects on cell activities, inflammation, and ROS level. Additionally, we examined the impact of miR-224-3p on aortic atherosclerotic plaque and lesions in a high-fat-diet-induced atherosclerosis model in ApoE−/− mice. Clinical atherosclerotic samples and ox-LDL-induced human aortic ECs (HAECs) exhibited low HDAC1/miR-224-3p expression and high HIF1α/FOSL2 expression. miR-224-3p repressed EC cell apoptosis, inflammatory responses, and intracellular ROS levels through targeting FOSL2. HIF1α reduced miR-224-3p expression to accelerate EC apoptosis and ROS accumulation. Moreover, HDAC1 inhibited HIF1α expression by deacetylation, which in turn enhanced miR-224-3p expression to attenuate EC apoptosis and ROS accumulation. miR-224-3p overexpression reduced atherosclerotic lesions in vivo. In summary, HDAC1 overexpression may enhance the anti-atherosclerotic and endothelial-protective effects of miR-224-3p-mediated inhibition of FOSL2 by deacetylating HIF1α, underscoring a novel therapeutic insight against experimental atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hao Lu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Wan-Yong Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Ji-Yue Liu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Hong-Yu Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Yue-Bo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Dong Yan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tian-Yu Zou
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, P.R. China
| | - Si Shen
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
17
|
Mukushkina D, Aisina D, Pyrkova A, Ryskulova A, Labeit S, Ivashchenko A. In silico Prediction of miRNA Interactions With Candidate Atherosclerosis Gene mRNAs. Front Genet 2020; 11:605054. [PMID: 33329752 PMCID: PMC7672156 DOI: 10.3389/fgene.2020.605054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The involvement of genes and miRNAs in the development of atherosclerosis is a challenging problem discussed in recent publications. It is necessary to establish which miRNAs affect the expression of candidate genes. We used known candidate atherosclerosis genes to predict associations. The quantitative characteristics of interactions of miRNAs with mRNA candidate genes were determined using the program, which identifies the localization of miRNA binding sites in mRNA, the free energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified. In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of overlapping miRNA binding sites in clusters led to their compaction and caused competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of 14 candidate genes with free energy interactions greater than -130 kJ/mole was determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs, ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed for the early diagnosis of this disease.
Collapse
Affiliation(s)
- Dina Mukushkina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Aisina
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anna Pyrkova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Alma Ryskulova
- Department of microbiology, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anatoliy Ivashchenko
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
18
|
Yu D, Wei W, Hefeng Y, Weihao L, Qianqian Q, Song L. Upregulated ox40l Can Be Inhibited by miR-146a-5p in Condylar Chondrocytes Induced by IL-1β and TNF-α: A Possible Regulatory Mechanism in Osteoarthritis. Int Arch Allergy Immunol 2020; 182:408-416. [PMID: 33147588 DOI: 10.1159/000512291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a common musculoskeletal disease characterized by pain, stiffness, limited activity, occasional effusion, and local inflammation. MiR-146 is one of the noncoding RNA closely related to OA, but the role of miR-146 in OA remains controversial. The tumour necrosis factor receptor OX40 is activated by its cognate ligand OX40L (TNFSF4) and functions as a T-cell costimulatory molecule. The T-cell functions, including cytokine production, expansion, and survival, are enhanced by the OX40 costimulatory signals. METHODS We established an inflammatory model of condylar chondrocytes induced by IL-1β and TNF-α and detected the expression of miRNA by miRNA sequencing. Then, cell transfection was used to study the role of miR146a-5p in OA. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and database analysis were used to screen out potential target genes of miR-146a-5p. A dual luciferase activity assay tested whether ox40l is the target gene of miR-146a-5p. RESULTS MiR-146a-5p and OX40L was upregulated after induced by IL-1β and TNF-α, miR-146a-5p reduced the production of inflammatory factors but had no effect on chondrophenotypic factors, and ox40l was targeted by miR-146a-5p. CONCLUSION OX40L and miR-146a-5p of condylar chondrocytes in the inflammatory environment (induced by IL-1β and TNF-α) were significantly increased, miR-146a-5p is a protective factor in the inflammatory response, which can reduce the production of inflammatory factors, and miR-146a-5p may regulate T-cell-mediated immunity through targeting of ox40l in OA.
Collapse
Affiliation(s)
- Ding Yu
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Wang Wei
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Yang Hefeng
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Li Weihao
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Qu Qianqian
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Li Song
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China,
| |
Collapse
|
19
|
Huang W, Wu X, Xue Y, Zhou Y, Xiang H, Yang W, Wei Y. MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-κB signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol 2020; 324:152-164. [PMID: 32950591 DOI: 10.1016/j.ijcard.2020.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The inflammatory status of epicardial adipose tissue (EAT) is one of the factors leading to the development of related diseases such as coronary artery disease (CAD). The thickness of CAD EAT increases and is accompanied with increased macrophage infiltration and heightened inflammatory responses. However, microRNAs (miRNAs) regulating the inflammatory responses of macrophages in CAD EAT remain unclear. METHOD miRNA expression profiles of CAD EATs and non-CAD EATs were determined by miRNA microarrays. Quantitative real-time reverse transcription-polymerase chain reaction, Western blotting, immunohistochemical assay, and fluorescence in-situ hybridization were adopted to detect miR-3614 expression and function in EATs and macrophages. The interaction between miR-3614 and tumor necrosis factor receptor-associated factor 6 (TRAF6) was identified using an online website combined with a dual-luciferase reporter assay. Enzyme-linked immunosorbent assay was performed to detect the expression of inflammatory cytokines. RESULTS The decreased expression of miR-3614 was identified in CAD EAT. The level of miR-3614 was down-regulated by lipopolysaccharide (LPS) in macrophages, whereas LPS-induced inflammatory injury can be reduced by miR-3614 overexpression. TRAF6 was predicted and verified to be a target of miR-3614. The phosphorylated levels of kinases in the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways were inhibited by miR-3614 overexpression. Importantly, the knockdown of TRAF6 inhibited the LPS-induced inflammatory cytokine expressions in cells. CONCLUSION A novel negative feedback loop by miR-3614 possibly contribute to the regulation of inflammatory processes via targeting the TRAF6/MAPK/NF-κB pathway in EATs and prevents an overwhelming inflammatory response.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Thoracic and Cardiovascular Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Xinggang Wu
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yajun Xue
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China; Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Yijun Zhou
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hui Xiang
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenkai Yang
- Department of Cardiovascular Surgery, Affiliated Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang 524045, China
| | - Yutao Wei
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong 250000, China.
| |
Collapse
|
20
|
Liao Y, Li H, Cao H, Dong Y, Gao L, Liu Z, Ge J, Zhu H. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell 2020; 12:194-212. [PMID: 32845445 PMCID: PMC7895884 DOI: 10.1007/s13238-020-00750-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction (MI). MicroRNA-146b (miR-146b) is an active regulator of immunomodulation, but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following MI remain largely unknown. Herein, miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients. Gain- and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells. Overexpression of miR-146b-5p activated fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition, impaired endothelial cell function and stress survival, and disturbed macrophage paracrine signaling. Interestingly, the opposite effects were observed when miR-146b-5p expression was inhibited. Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1 (IRAK1) and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1). Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death, and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine MI models. Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following MI.
Collapse
Affiliation(s)
- Yiteng Liao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hao Cao
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yun Dong
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lei Gao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Hongming Zhu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
21
|
Desjarlais M, Dussault S, Rivera JC, Chemtob S, Rivard A. MicroRNA Expression Profiling of Bone Marrow-Derived Proangiogenic Cells (PACs) in a Mouse Model of Hindlimb Ischemia: Modulation by Classical Cardiovascular Risk Factors. Front Genet 2020; 11:947. [PMID: 32973881 PMCID: PMC7472865 DOI: 10.3389/fgene.2020.00947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Classical cardiovascular risk factors (CRFs) are associated with impaired angiogenic activities of bone marrow–derived proangiogenic cells (PACs) related to peripheral artery diseases (PADs) and ischemia-induced neovascularization. MicroRNAs (miRs) are key regulators of gene expression, and they are involved in the modulation of PAC function and PAC paracrine activity. However, the effects of CRFs on the modulation of miR expression in PACs are unknown. Aims and Methods We used a model of hindlimb ischemia and next-generation sequencing to perform a complete profiling of miRs in PACs isolated from the bone marrow of mice subjected to three models of CRFs: aging, smoking (SMK) and hypercholesterolemia (HC). Results Approximately 570 miRs were detected in PACs in the different CRF models. When excluding miRs with a very low expression level (<100 RPM), 40 to 61 miRs were found to be significantly modulated by aging, SMK, or HC. In each CRF condition, we identified downregulated proangiogenic miRs and upregulated antiangiogenic miRs that could contribute to explain PAC dysfunction. Interestingly, several miRs were similarly downregulated (e.g., miR-542-3p, miR-29) or upregulated (e.g., miR-501, miR-92a) in all CRF conditions. In silico approaches including Kyoto Encyclopedia of Genes and Genomes and cluster dendogram analyses identified predictive effects of these miRs on pathways having key roles in the modulation of angiogenesis and PAC function, including vascular endothelial growth factor signaling, extracellular matrix remodeling, PI3K/AKT/MAPK signaling, transforming growth factor beta (TGFb) pathway, p53, and cell cycle progression. Conclusion This study describes for the first time the effects of CRFs on the modulation of miR profile in PACs related to PAD and ischemia-induced neovascularization. We found that several angiogenesis-modulating miRs are similarly altered in different CRF conditions. Our findings constitute a solid framework for the identification of miRs that could be targeted in PACs in order to improve their angiogenic function and for the future development of novel therapies to improve neovascularization and reduce tissue damage in patients with severe PAD.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvie Dussault
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| |
Collapse
|
22
|
Yang G, Zhao Y. Overexpression of miR-146b-5p Ameliorates Neonatal Hypoxic Ischemic Encephalopathy by Inhibiting IRAK1/TRAF6/TAK1/NF-αB Signaling. Yonsei Med J 2020; 61:660-669. [PMID: 32734729 PMCID: PMC7393297 DOI: 10.3349/ymj.2020.61.8.660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Neonatal hypoxic ischemic encephalopathy (HIE) is an essential factor underlying neonatal death and disability. This study sought to explore the role of miR-146b-5p in regulating neonatal HIE. MATERIALS AND METHODS In vitro and in vivo HIE models were established in PC12 cells and 10-day neonatal Sprague Dawley rats, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess miR-146b-5p expression and inflammatory factors [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] in brain lesions and PC12 cells, while enzyme-linked immunosorbent assay was employed to detect the expression of oxidative stress factors (SOD and GSH-Px). Gain- and loss-assays of miR-146b-5p were conducted to verify its role in modulating the viability and apoptosis of PC12 cells under oxygen-glucose deprivation (OGD) treatment. Expression of TLR4, IRAK1, TRAF6, TAK1, and NF-κB were examined by qRT-PCR and/or Western blot. Dual luciferase activity assay was conducted to identify relationships between miR-146b-5p and IRAK1. RESULTS In the HIE models, significant oxidative stress and inflammatory responses emerged upon upregulation of TLR4/IRAK1/TRAF6/TAK1/NF-κB signaling. Overexpression of miR-146b-5p greatly inhibited OGD-induced PC12 cell injury, inflammatory responses, and oxidative stress. Inhibiting miR-146b-5p, however, had the opposite effects. IRAK1 was found to be a target of miR-146b-5p, and miR-146b-5p overexpression suppressed the activation of IRAK1/TRAF6/TAK1/NF-κB signaling. CONCLUSION This study demonstrated that miR-146b-5p overexpression alleviates HIE-induced neuron injury by inhibiting the IRAK1/TRAF6/TAK1/NF-κB pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
- Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, China.
| | - Yuan Zhao
- Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, China
| |
Collapse
|
23
|
Desjarlais M, Wirth M, Rivera JC, Lahaie I, Dabouz R, Omri S, Ruknudin P, Borras C, Chemtob S. MicroRNA-96 Promotes Vascular Repair in Oxygen-Induced Retinopathy-A Novel Uncovered Vasoprotective Function. Front Pharmacol 2020; 11:13. [PMID: 32116694 PMCID: PMC7008172 DOI: 10.3389/fphar.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Vascular degeneration is a hallmark in the pathogenesis of oxygen-induced retinopathy (OIR). Dysregulation of microRNAs (miRNAs), key regulators of genes expressions, has been implicated in the regulation of ocular angiogenesis. However, miRNAs specific functions in impaired vascular development during OIR are poorly understood. Herein, we identified miR-96 as one of the most highly expressed miRNAs in the retina and choroid during vascular development and investigated the potential role of miR-96 on microvascular degeneration in a rat OIR model. Methods and Results Next generation sequencing (NGS) and qRT-PCR analysis showed that miR-96 maintain high levels of expression during ocular vascular development. Nevertheless, miR-96 was significantly downregulated in the retina and choroid of OIR rats (80% O2 from P5 to P10) during the phase of microvascular degeneration. Similarly, human retinal microvascular endothelial cells (HRMEC) subjected to hyperoxia (80% O2) showed a significant downregulation of miR-96 evaluated by qPCR. Interestingly, HRMEC supplemented with miR-96 regulated positively the expression of several key angiogenic factors including VEGF and ANG-2. To explore the angiogenic activity of miR-96 on HRMEC, we performed a gain/loss of function study. In a similar way to hyperoxia exposure, we observed a robust angiogenic impairment (tubulogenesis and migration) on HRMEC transfected with an antagomiR-96. Conversely, overexpression of miR-96 stimulated the angiogenic activity of HRMEC and protected against hyperoxia-induced endothelial dysfunction. Finally, we evaluated the potential vasoprotective function of miR-96 in OIR animals. Rat pups intravitreally supplemented with miR-96 mimic (1 mg/kg) displayed a significant preservation of retinal/choroidal microvessels at P10 compared to controls. This result was consistent with the maintenance of physiologic levels of VEGF and ANG-2 in the OIR retina. Conclusion This study demonstrates that miR-96 regulates the expression of angiogenic factors (VEGF/ANG-2) associated to the maintenance of retinal and choroidal microvasculature during physiological and pathological conditions. Intravitreal supplementation of miR-96 mimic could constitute a novel therapeutic strategy to improve vascular repair in OIR and other ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Celine Borras
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
24
|
Pérez-Cremades D, Cheng HS, Feinberg MW. Noncoding RNAs in Critical Limb Ischemia. Arterioscler Thromb Vasc Biol 2020; 40:523-533. [PMID: 31893949 DOI: 10.1161/atvbaha.119.312860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral artery disease, caused by chronic arterial occlusion of the lower extremities, affects over 200 million people worldwide. Peripheral artery disease can progress into critical limb ischemia (CLI), its more severe manifestation, which is associated with higher risk of limb amputation and cardiovascular death. Aiming to improve tissue perfusion, therapeutic angiogenesis held promise to improve ischemic limbs using delivery of growth factors but has not successfully translated into benefits for patients. Moreover, accumulating studies suggest that impaired downstream signaling of these growth factors (or angiogenic resistance) may significantly contribute to CLI, particularly under harsh environments, such as diabetes mellitus. Noncoding RNAs are essential regulators of gene expression that control a range of pathophysiologies relevant to CLI, including angiogenesis/arteriogenesis, hypoxia, inflammation, stem/progenitor cells, and diabetes mellitus. In this review, we summarize the role of noncoding RNAs, including microRNAs and long noncoding RNAs, as functional mediators or biomarkers in the pathophysiology of CLI. A better understanding of these ncRNAs in CLI may provide opportunities for new targets in the prevention, diagnosis, and therapeutic management of this disabling disease state.
Collapse
Affiliation(s)
- Daniel Pérez-Cremades
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.-C., H.S.C., M.W.F.).,Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Spain (D.P.-C.)
| | - Henry S Cheng
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.-C., H.S.C., M.W.F.)
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.-C., H.S.C., M.W.F.)
| |
Collapse
|