1
|
Björnson E, Adiels M, Borén J, Packard CJ. Lipoprotein(a) is a highly atherogenic lipoprotein: pathophysiological basis and clinical implications. Curr Opin Cardiol 2024; 39:503-510. [PMID: 39360655 DOI: 10.1097/hco.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
PURPOSE OF REVIEW Lipoprotein(a) has been identified as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis. However, as reviewed here, there is ongoing debate as to the key pathogenic features of Lp(a) particles and the degree of Lp(a) atherogenicity relative to low-density lipoprotein (LDL). RECENT FINDINGS Genetic analyses have revealed that Lp(a) on a per-particle basis is markedly (about six-fold) more atherogenic than LDL. Oxidized phospholipids carried on Lp(a) have been found to have substantial pro-inflammatory properties triggering pathways that may contribute to atherogenesis. Whether the strength of association of Lp(a) with ASCVD risk is dependent on inflammatory status is a matter of current debate and is critical to implementing intervention strategies. Contradictory reports continue to appear, but most recent studies in large cohorts indicate that the relationship of Lp(a) to risk is independent of C-reactive protein level. SUMMARY Lp(a) is a highly atherogenic lipoprotein and a viable target for intervention in a significant proportion of the general population. Better understanding the basis of its enhanced atherogenicity is important for risk assessment and interpreting intervention trials.
Collapse
Affiliation(s)
| | - Martin Adiels
- Department of Molecular and Clinical Medicine
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Boffa MB, Koschinsky ML. Lipoprotein(a) and cardiovascular disease. Biochem J 2024; 481:1277-1296. [PMID: 39302109 DOI: 10.1042/bcj20240037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Elevated plasma levels of lipoprotein(a) (Lp(a)) are a prevalent, independent, and causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve disease. Lp(a) consists of a lipoprotein particle resembling low density lipoprotein and the covalently-attached glycoprotein apolipoprotein(a) (apo(a)). Novel therapeutics that specifically and potently lower Lp(a) levels are currently in advanced stages of clinical development, including in large, phase 3 cardiovascular outcomes trials. However, fundamental unanswered questions remain concerning some key aspects of Lp(a) biosynthesis and catabolism as well as the true pathogenic mechanisms of the particle. In this review, we describe the salient biochemical features of Lp(a) and apo(a) and how they underlie the disease-causing potential of Lp(a), the factors that determine plasma Lp(a) concentrations, and the mechanism of action of Lp(a)-lowering drugs.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Zhang L, Wang X, Chen XW. The biogenesis and transport of triglyceride-rich lipoproteins. Trends Endocrinol Metab 2024:S1043-2760(24)00196-6. [PMID: 39164120 DOI: 10.1016/j.tem.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Triglyceride-rich lipoproteins (TRLs) play essential roles in human health and disease by transporting bulk lipids into the circulation. This review summarizes the fundamental mechanisms and diverse factors governing lipoprotein production, secretion, and regulation. Emphasizing the broader implications for human health, we outline the intricate landscape of lipoprotein research and highlight the potential coordination between the biogenesis and transport of TRLs in physiology, particularly the unexpected coupling of metabolic enzymes and transport machineries. Challenges and opportunities in lipoprotein biology with respect to inherited diseases and viral infections are also discussed. Further characterization of the biogenesis and transport of TRLs will advance both basic research in lipid biology and translational medicine for metabolic diseases.
Collapse
Affiliation(s)
- Linqi Zhang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China
| | - Xiao Wang
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, PR China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, PR China; Peking University (PKU)-Tsinghua University (THU) Joint Center for Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
4
|
Kinoshita D, Suzuki K, Yuki H, Niida T, Fujimoto D, Minami Y, Dey D, Lee H, McNulty I, Ako J, Ferencik M, Kakuta T, Jang IK. Sex-Specific Association Between Perivascular Inflammation and Plaque Vulnerability. Circ Cardiovasc Imaging 2024; 17:e016178. [PMID: 38377234 DOI: 10.1161/circimaging.123.016178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND It is not known whether there is a sex difference in the association between perivascular inflammation and plaque vulnerability. The aim of this study was to investigate the sex-specific association between perivascular inflammation and plaque vulnerability. METHODS Patients who underwent coronary computed tomography angiography and optical coherence tomography were enrolled. All images were analyzed at a core laboratory. The level of perivascular inflammation was assessed by pericoronary adipose tissue attenuation on computed tomography angiography and the level of plaque vulnerability by optical coherence tomography. Patients were classified into 3 groups according to tertile levels of culprit vessel pericoronary adipose tissue attenuation (low inflammation, ≤-73.1 Hounsfield units; moderate inflammation, -73.0 to -67.0 Hounsfield units; or high inflammation, ≥-66.9 Hounsfield units). RESULTS A total of 968 lesions in 409 patients were included: 184 lesions in 82 women (2.2 plaques per patient) and 784 lesions in 327 men (2.4 plaques per patient). Women were older (median age, 71 versus 65 years; P<0.001) and had less severe coronary artery disease with a lower plaque burden than men. In women, it was found that perivascular inflammation was significantly associated with plaque vulnerability, with a higher prevalence of thin-cap fibroatheroma and greater macrophage grades in the high inflammation group compared with the low inflammation group (low versus moderate versus high inflammation in women: 18.5% versus 31.8% versus 46.9%, P=0.002 for low versus high inflammation; 3 versus 4 versus 12, P<0.001 for low versus high inflammation, respectively). However, no significant differences were observed among the 3 groups in men. CONCLUSIONS Perivascular inflammation was associated with a higher prevalence of thin-cap fibroatheroma and more significant macrophage accumulation in women but not in men. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04523194.
Collapse
Affiliation(s)
- Daisuke Kinoshita
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Keishi Suzuki
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Haruhito Yuki
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Takayuki Niida
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Daichi Fujimoto
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yoshiyasu Minami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.M., J.A.)
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.D.)
| | - Hang Lee
- Biostatistics Center (H.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Iris McNulty
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.M., J.A.)
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland (M.F.)
| | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (T.K.)
| | - Ik-Kyung Jang
- Cardiology Division (D.K., K.S., H.Y., T.N., D.F., I.M., I.-K.J.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|