1
|
Taskinen JH, Holopainen M, Ruhanen H, van der Stoel M, Käkelä R, Ikonen E, Keskitalo S, Varjosalo M, Olkkonen VM. Functional omics of ORP7 in primary endothelial cells. BMC Biol 2024; 22:292. [PMID: 39695567 DOI: 10.1186/s12915-024-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy. We performed a hypothesis-free multi-omics analysis of chemical ORP7 inhibition utilizing transcriptomics and lipidomics as well as proximity biotinylation interactomics to characterize ORP7 functions in a primary cell type, human umbilical vein endothelial cells (HUVECs). Moreover, assays on angiogenesis, cholesterol efflux, and lipid droplet quantification were conducted. RESULTS Pharmacological inhibition of ORP7 leads to an increase in gene expression related to lipid metabolism and inflammation, while genes associated with cell cycle and cell division were downregulated. Lipidomic analysis revealed increases in ceramides and lysophosphatidylcholines as well as saturated and monounsaturated triacylglycerols. Significant decreases were seen in all cholesteryl ester and in some unsaturated triacylglycerol species, compatible with the detected decrease of mean lipid droplet area. Along with the reduced lipid stores, ATP-binding cassette subfamily G member 1 (ABCG1)-mediated cholesterol efflux and angiogenesis decreased. Interactomics revealed an interaction of ORP7 with AKT1, a central metabolic regulator. CONCLUSIONS The transcriptomics results suggest an increase in prostanoid as well as oxysterol synthesis, which could be related to the observed upregulation of proinflammatory genes. We envision that the defective angiogenesis in HUVECs subjected to ORP7 inhibition could be the result of an unfavorable plasma membrane lipid composition and/or reduced potential for cell division. To conclude, the present study suggests multifaceted functions of ORP7 in lipid homeostasis, angiogenic tube formation, and gene expression of lipid metabolism, inflammation, and cell cycle in primary endothelial cells.
Collapse
Affiliation(s)
- Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Minna Holopainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Miesje van der Stoel
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, Viikinkaari 1, PO BOX 65, 00014, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Salla Keskitalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
| | - Markku Varjosalo
- Proteomics Unit Viikki, Institute of Biotechnology, HiLIFE and Biocenter Finland, University of Helsinki, Viikinkaari 1, 00790, Helsinki, Finland
- Systems Biology/Pathology Research Group, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
2
|
Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne) 2024; 14:1322869. [PMID: 38303975 PMCID: PMC10830840 DOI: 10.3389/fendo.2023.1322869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Since statins have had such tremendous therapeutic success over the last three decades, the field of atherosclerosis has become somewhat LDL-centric, dismissing the relevance of triglycerides (TG), particularly chylomicrons, in atherogenesis. Nonetheless, 50% of patients who take statins are at risk of developing atherosclerotic cardiovascular disease (ASCVD) and are unable to achieve their goal LDL-C levels. This residual risk is mediated, in part by triglyceride rich lipoproteins (TRL) and their remnants. Following his seminal investigation on the subject, Zilversmit proposed that atherosclerosis is a postprandial event in 1979 (1-4). In essence, the concept suggests that remnant cholesterol-rich chylomicron (CM) and very-low density lipoprotein (VLDL) particles play a role in atherogenesis. Given the foregoing, this narrative review addresses the most recent improvements in our understanding of postprandial dyslipidemia. The primary metabolic pathways of chylomicrons are discussed, emphasizing the critical physiological role of lipoprotein lipase and apoCIII, the importance of these particles' fluxes in the postprandial period, their catabolic rate, the complexities of testing postprandial metabolism, and the role of angiopoietin-like proteins in the partition of CM during the fed cycle. The narrative is rounded out by the dysregulation of postprandial lipid metabolism in insulin resistance states and consequent CVD risk, the clinical evaluation of postprandial dyslipidemia, current research limits, and potential future study directions.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, Touro University California, Vallejo, CA, United States
| |
Collapse
|
3
|
Latham Birt SH, Purcell R, Botham KM, Wheeler-Jones CPD. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway. J Lipid Res 2016; 57:1204-18. [PMID: 27185859 PMCID: PMC4918850 DOI: 10.1194/jlr.m067108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs-artificial TG-rich CMR-like particles (A-CRLPs)-containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction.
Collapse
Affiliation(s)
- Sally H Latham Birt
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Robert Purcell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Kathleen M Botham
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, United Kingdom
| | | |
Collapse
|
4
|
Otlu HG, Kayhan B, Güldür T. Effects of interactions between various fats and active/passive phases on postprandial inflammation in rats. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1088185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Abstract
PURPOSE OF REVIEW In this review we discuss the postprandial pathophysiological mechanisms that promote vascular disease, the evidence for a role of postprandial lipaemia (PPL) in vascular disease and the effect of modifiable and nonmodifiable factors in PPL. RECENT FINDINGS PPL refers to the dynamic changes in serum lipids and lipoproteins (mainly in serum triglycerides) that occur after a fat load or a meal. Recent data indicate that postprandial or nonfasting triglyceride levels are better predictors of cardiovascular risk, suggesting that efficiency of postprandial handling of triglyceride-rich lipoproteins plays a role in the causation of vascular disease. SUMMARY The recent finding that postprandial serum triglyceride levels are even better than fasting serum triglyceride levels as predictors of vascular disease indicate that it is better to measure an index of triglyceride-rich lipoproteins (in most cases serum triglyceride levels) in the postprandial period than in the postabsorptive fasting state. Moreover, by the time the postabsorptive state is reached, some of these proatherogenic triglyceride-rich lipoprotein changes may be missed in the measurement.
Collapse
|
6
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
7
|
Esser D, van Dijk SJ, Oosterink E, Müller M, Afman LA. A high-fat SFA, MUFA, or n3 PUFA challenge affects the vascular response and initiates an activated state of cellular adherence in lean and obese middle-aged men. J Nutr 2013; 143:843-51. [PMID: 23616512 DOI: 10.3945/jn.113.174540] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BMI and fatty acid type affect postprandial metabolic TG responses, but whether these factors also affect vascular, inflammatory, and leukocyte adherence responses remains unclear. We therefore compared those postprandial responses between lean and obese men after 3 high-fat challenges differing in fatty acid composition. In a crossover double-blind study, 18 lean (BMI: 18-25 kg/m(2)) and 18 obese (BMI >29 kg/m(2)) middle-aged men received 3 isocaloric high-fat milkshakes containing 95 g fat (88% of energy), either high in SFAs (54% of energy/total fat), MUFAs (83% of energy/total fat), or n3 (omega-3) PUFAs (40% of energy/total fat). Hemodynamics, augmentation index (AIX), leukocyte cell surface adhesion markers, and plasma cytokines involved in vascular adherence, coagulation, and inflammation were measured before and after consumption of the milkshakes. In both groups and after all shakes were consumed, AIX decreased; plasma soluble intercellular adhesion molecule (sICAM) 1, sICAM3, soluble vascular cell adhesion molecule (sVCAM) 1, and interleukin-8 increased; monocyte CD11a, CD11b, and CD621 expression increased; neutrophil CD11a, CD11b, and CD621 expression increased; and lymphocyte CD62l expression increased (P < 0.05). Lymphocyte CD11a and CD11b expression decreased in lean participants after consumption of all shakes but did not change in obese participants (P < 0.05). Obese participants had a less pronounced decrease in heart rate after the consumption of all shakes (P < 0.05). MUFA consumption induced a more pronounced decrease in blood pressure and AIX compared with the other milkshakes in both lean and obese participants (P < 0.05). High-fat consumption initiates an activated state of cellular adherence and an atherogenic milieu. This response was independent of fatty acid type consumed or of being lean or obese, despite the clear differences in postprandial TG responses between the groups and different milkshakes. These findings suggest that in addition to increased TGs, other mechanisms are involved in the high-fat consumption-induced activated state of cellular adherence.
Collapse
Affiliation(s)
- Diederik Esser
- Top Institute Food and Nutrition, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Kanner J, Gorelik S, Roman S, Kohen R. Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8790-8796. [PMID: 22530973 DOI: 10.1021/jf300193g] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent studies dramatically showed that the removal of circulating modified low-density lipoprotein (LDL) results in complete prevention of atherosclerosis. The gastrointestinal tract is constantly exposed to food, some of it containing oxidized compounds. Lipid oxidation in the stomach was demonstrated by ingesting heated red meat in rats. Red wine polyphenols added to the rats' meat diet prevented lipid peroxidation in the stomach and absorption of malondialdehyde (MDA) in rat plasma. In humans, postprandial plasma MDA levels rose by 3-fold after a meal of red meat cutlets. MDA derived from meat consumption caused postprandial plasma LDL modification in human. The levels of plasma MDA showed a 75% reduction by consumption of red wine polyphenols during the meat meal. Locating the main biological site of action of polyphenols in the stomach led to a revision in the understanding of how antioxidants work in vivo and may help to elucidate the mechanism involved in the protective effects of polyphenols in human health.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO , Volcani Center, Bet Dagan, Israel.
| | | | | | | |
Collapse
|
9
|
Park Y, Booth FW, Lee S, Laye MJ, Zhang C. Physical activity opposes coronary vascular dysfunction induced during high fat feeding in mice. J Physiol 2012; 590:4255-68. [PMID: 22674721 DOI: 10.1113/jphysiol.2012.234856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The study's purpose was to investigate if physical activity initiated with the start of high-fat feeding would oppose development of endothelial dysfunction, and if it does, then to determine some potential mechanisms. C57BL/6 female mice were randomly divided into three groups: (1) control low-fat diet (LF-SED; 15% of calories from fat), (2) high-fat diet (HF-SED; 45% of calories from fat), and (3) HF diet given access to a voluntary running wheel (HF-RUN). Our hypothesis was that HF-RUN would differ in multiple markers of endothelial dysfunction from HF-SED after 10 weeks of 45%-fat diet, but would not differ from LF-SED. HF-RUN differed from HF-SED in nine determinations in which HF-SED either had decreases in (1) acetylcholine (ACh)-induced and flow-induced vasodilatations in isolated, pressurized coronary arterioles, (2) heart phosphorylated endothelial nitric oxide synthase (p-eNOS/eNOS) protein, (3) coronary arteriole leptin (ob) receptor protein, (4) phosphorylated signal transducer and activator of transcription 3 (p-STAT3/STAT3) protein, and (5) coronary arteriole superoxide dismutase 1 protein; or had increases in (6) percentage body fat, (7) serum leptin, (8) coronary arteriole suppressor of cytokine signalling 3 (SOCS3) protein, and (9) coronary arteriole gp91(phox) protein. Higher endothelium-dependent vasodilatation by ACh or leptin was abolished with incubation of NOS inhibitor N(G)-nitro-l-arginine-methyl ester (l-NAME) in LF-SED and HF-RUN groups. Further, impaired ACh-induced vasodilatation in HF-SED was normalized by apocynin or TEMPOL to LF-SED and HF-RUN. These findings demonstrate multiple mechanisms (eNOS, leptin and redox balance) by which voluntary running opposes the development of impaired coronary arteriolar vasodilatation during simultaneous high-fat feeding.
Collapse
Affiliation(s)
- Yoonjung Park
- Internal Medicine, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
10
|
Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:858-66. [DOI: 10.1016/j.bbalip.2011.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/23/2023]
|
11
|
Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int J Vasc Med 2011; 2012:947417. [PMID: 21961070 PMCID: PMC3179890 DOI: 10.1155/2012/947417] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022] Open
Abstract
Postprandial hyperlipidemia with accumulation of remnant lipoproteins is a common metabolic disturbance associated with atherosclerosis and vascular dysfunction, particularly during chronic disease states such as obesity, the metabolic syndrome and, diabetes. Remnant lipoproteins become attached to the vascular wall, where they can penetrate intact endothelium causing foam cell formation. Postprandial remnant lipoproteins can activate circulating leukocytes, upregulate the expression of endothelial adhesion molecules, facilitate adhesion and migration of inflammatory cells into the subendothelial space, and activate the complement system. Since humans are postprandial most of the day, the continuous generation of remnants after each meal may be one of the triggers for the development of atherosclerosis. Modulation of postprandial lipemia by lifestyle changes and pharmacological interventions could result in a further decrease of cardiovascular mortality and morbidity. This paper will provide an update on current concepts concerning the relationship between postprandial lipemia, inflammation, vascular function, and therapeutic options.
Collapse
|
12
|
Watts GF, Ribalta J. Progress in understanding postprandial dyslipidaemia: Second International Symposium on the Role of Chylomicrons in Disease l. ATHEROSCLEROSIS SUPP 2010; 11:1-2. [DOI: 10.1016/j.atherosclerosissup.2010.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|