1
|
Konrad M, Shah B, Rady E, Holden R, Lieber M, Hill JH, Desphande K. Clinical risk factors associated with the need for tracheostomy in traumatic cervical and high thoracic spinal cord injury. Am J Surg 2024; 239:116033. [PMID: 39481278 DOI: 10.1016/j.amjsurg.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Our objective was to assess the association of completeness and level of spinal cord injury (SCI) with the need for tracheostomy and identify additional risk factors predictive of tracheostomy. METHODS This was a retrospective review of patients with SCI between January 2017 and December 2022. RESULTS Patients with complete SCI were roughly thirty-three times more likely to have a tracheostomy when compared to incomplete injury (82 % vs 12 %, p < 0.001, OR = 32.9). The rate of tracheostomy did not differ between spinal cord levels for complete (p = 0.68) or incomplete (p = 0.08) injuries. Penetrating injury, low GCS, high ISS, and polytrauma were associated with tracheostomy need in incomplete SCI. CONCLUSION Complete injury was statistically significantly associated with the need for tracheostomy while level of injury failed to reach significance. Patients with incomplete SCI that have certain clinical risk factors should be considered for early tracheostomy.
Collapse
Affiliation(s)
- Maximalian Konrad
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA; Ohio University Heritage College of Osteopathic Medicine, 191 W Union St, Athens, OH 45701, USA.
| | - Bhairav Shah
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA
| | - Emily Rady
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA
| | - Ryan Holden
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA
| | - Michael Lieber
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA
| | - Joshua H Hill
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA; Ohio University Heritage College of Osteopathic Medicine, 191 W Union St, Athens, OH 45701, USA
| | - Keshav Desphande
- Division of Trauma and Acute Care Surgery, OhioHealth Grant Medical Center, 111 S Grant Ave, Columbus, OH 43215, USA; Ohio University Heritage College of Osteopathic Medicine, 191 W Union St, Athens, OH 45701, USA
| |
Collapse
|
2
|
Wiles MD, Benson I, Edwards L, Miller R, Tait F, Wynn-Hebden A. Management of acute cervical spinal cord injury in the non-specialist intensive care unit: a narrative review of current evidence. Anaesthesia 2024; 79:193-202. [PMID: 38088443 DOI: 10.1111/anae.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Each year approximately one million people suffer spinal cord injury, which has significant physical, psychosocial and economic impacts on patients and their families. Spinal cord rehabilitation centres are a well-established part of the care pathway for patients with spinal cord injury and facilitate improvements in functional independence and reductions in healthcare costs. Within the UK, however, there are a limited number of spinal cord injury centres, which delays admission. Patients and their families often perceive that they are not receiving specialist care while being treated in non-specialist units. This review aimed to provide clinicians who work in non-specialist spinal injury centres with a summary of contemporary studies relevant to the critical care management of patients with cervical spinal cord injury. We undertook a targeted literature review including guidelines, systematic reviews, meta-analyses, clinical trials and randomised controlled trials published in English between 1 June 2017 and 1 June 2023. Studies involving key clinical management strategies published before this time, but which have not been updated or repeated, were also included. We then summarised the key management themes: acute critical care management approaches (including ventilation strategies, blood pressure management and tracheostomy insertion); respiratory weaning techniques; management of pain and autonomic dysreflexia; and rehabilitation.
Collapse
Affiliation(s)
- M D Wiles
- Academic Department of Anaesthesia and Peri-operative Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Centre for Applied Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - I Benson
- National Spinal Injuries Centre, Buckinghamshire Hospitals NHS Trust, Stoke Mandeville, UK
| | - L Edwards
- University of Nottingham, Nottingham, UK
| | - R Miller
- Critical Care Department, Northampton General Hospital, Northampton, UK
| | - F Tait
- Critical Care Department, Northampton General Hospital, Northampton, UK
| | - A Wynn-Hebden
- Department of Anaesthesia and Critical Care, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
3
|
Respiratory Complications and Weaning Considerations for Patients with Spinal Cord Injuries: A Narrative Review. J Pers Med 2022; 13:jpm13010097. [PMID: 36675758 PMCID: PMC9861966 DOI: 10.3390/jpm13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Respiratory complications following traumatic spinal cord injury are common and are associated with high morbidity and mortality. The inability to cough and clear secretions coupled with weakened respiratory and abdominal muscles commonly leads to respiratory failure, pulmonary edema, and pneumonia. Higher level and severity of the spinal cord injury, history of underlying lung pathology, history of smoking, and poor baseline health status are potential predictors for patients that will experience respiratory complications. For patients who may require prolonged intubation, early tracheostomy has been shown to lead to improved outcomes. Prediction models to aid clinicians with the decision and timing of tracheostomy have been shown to be successful but require larger validation studies in the future. Mechanical ventilation weaning strategies also require further investigation but should focus on a combination of optimizing ventilator setting, pulmonary toilet techniques, psychosocial well-being, and an aggressive bowel regimen.
Collapse
|
4
|
Clinical Indications for Extubation in Coma Patients with Severe Neurological Craniocerebral Injury with Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8012018. [PMID: 36193306 PMCID: PMC9526588 DOI: 10.1155/2022/8012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Computer searches of the PubMed, Cochrane Library, and Embase databases for randomized controlled studies on the effects of intensive nutrition on clinical outcomes in patients with severe craniocerebral injury were conducted from the time of database creation to June 11, 2022, along with manual searches of the relevant literature. Two investigators independently screened the literature, extracted data, and evaluated the risk of bias of the included studies before the effect sizes were combined using RevMan 5.3 statistical software provided by the Cochrane Collaboration Network, and publication bias was detected using Stata 12.0 software. Meta-analysis showed that total protein levels were higher in the intensive nutrition group than in the regular nutrition group (WMD = 4.96 g/L (1.57-8.34), P < 0.001); IgA levels were significantly higher in the intensive nutrition group than in the regular nutrition group (SMD = 0.79 (0.51-1.07), P < 0.001; SMD = 0.98 (0.58-1.38), P < 0.001); IgG levels were significantly higher in the fortified group than in the regular group (SMD = 0.98 (0.58-1.38), P < 0.001); CD4/CD8 was significantly higher in the fortified patients than in the regular patients with a combined effect size of WMD = 0.33 (0.18-0.48) (P < RR = 0.45 (0.27-0.75), P = 0.002). The results show that effective support of early enteral nutrition can reduce the occurrence of gastrointestinal complications in patients, give them a better adaptation process to the gastrointestinal tract, and ensure the degree of tolerance of their gastric mucosa, thus absorbing more nutrition. Fortification significantly reduced the incidence of gastric retention in patients with craniocerebral injury (RR = 0.19 (0.07-0.49), P < 0.001). In the subgroup analysis of the three groups, it was shown that, depending on the starting time, the total protein level and IgG level were better in the early nutrition at 24 h than in the late nutrition above 24h and that, depending on the starting dose, the total protein level, IgA, IgG, and CD4/CD8 were better in the intervention at doses above 30 mL/h, using the starting dose of 30 mL/h as the cut-off point. In the subgroup analysis based on different nutrition methods (enteral and parenteral nutrition), IgA levels and the incidence of bloating and diarrhea were better than those of parenteral nutrition in the indicators of enteral nutrition.
Collapse
|
5
|
Pascoal A, Lourenço C, Pires C, Paiva A, Vaz IM. Good Bronchial Hygiene Reaches the Left Lung: Successful Extubation in a Tetraplegic Patient With Spinal Cord Injury. Cureus 2022; 14:e28732. [PMID: 36211093 PMCID: PMC9531700 DOI: 10.7759/cureus.28732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 11/05/2022] Open
|
6
|
Silverstein AL, Alilain WJ. Intermittent Hypoxia Induces Greater Functional Breathing Motor Recovery as a Fixed Rather Than Varied Duration Treatment after Cervical Spinal Cord Injury in Rats. Neurotrauma Rep 2021; 2:343-353. [PMID: 34318302 PMCID: PMC8310748 DOI: 10.1089/neur.2021.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intermittent hypoxia treatment (IH) has been shown to improve respiratory function in both pre-clinical animal models and human subjects following spinal cord injury (SCI), historically consisting of alternating and equal intervals of hypoxic and normoxic exposure. We describe such a procedure as fixed duration IH (FD-IH) and modulation of its severity, intermittency, and post-injury time-point of application differentially affects expression of breathing motor plasticity. As such, the established IH protocol exhibits similarity to instrumental conditioning and can be described as behavioral training through reinforcement. Findings from the field of operant conditioning, a form of more advanced learning, inspire the consideration that FD-IH protocols may be improved through exchanging fixed for varied durations of hypoxia between reinforcement. Thus, we hypothesized that varied duration intermittent hypoxia treatment (VD-IH) would induce greater breathing motor recovery ipsilateral to injury than FD-IH after cervical SCI in rats. To test this hypothesis, we treated animals with VD-IH or FD-IH for 5 days at 1 week and at 8 weeks following cervical SCI, then assessed breathing motor output by diaphragm electromyography (EMG) recording, and compared between groups. At 1 week post-injury, VD-IH-exposed animals trended slightly toward exhibiting greater levels of respiratory recovery in the hemidiaphragm ipsilateral to lesion than did FD-IH-treated animals, but at 8 weeks FD-IH produced significantly greater respiratory motor output than did VD-IH. Thus, these results identify a novel sensitivity of respiratory motor function to variations in the IH protocol that may lead to development of more effective treatments following SCI.
Collapse
Affiliation(s)
- Aaron L Silverstein
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Warren J Alilain
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Lee S, Kim SH. A Systematic Review on the Effects of Respiratory Rehabilitation Programs in Spinal Cord Injury. ACTA ACUST UNITED AC 2020. [DOI: 10.7587/kjrehn.2020.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|