1
|
Mountain RV, Langlais AL, Hu D, Baron R, Lary CW, Motyl KJ. Social isolation through single housing negatively affects trabecular and cortical bone in adult male, but not female, C57BL/6J mice. Bone 2023; 172:116762. [PMID: 37044360 PMCID: PMC10084633 DOI: 10.1016/j.bone.2023.116762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Social isolation is a potent form of psychosocial stress and is a growing public health concern, particularly among older adults. Even prior to the onset of the COVID-19 pandemic, which has significantly increased the prevalence of isolation and loneliness, researchers have been concerned about a rising "epidemic" of loneliness. Isolation is associated with an increased risk for many physical and mental health disorders and increased overall mortality risk. In addition to social isolation, older adults are also at greater risk for osteoporosis and related fractures. While researchers have investigated the negative effects of other forms of psychosocial stress on bone, including depression and PTSD, the effects of social isolation on bone have not been thoroughly investigated. The aim of this study was to test the hypothesis that social isolation would lead to bone loss in male and female C57BL/6J mice. 16-week-old mice were randomized into social isolation (1 mouse/cage) or grouped housing (4 mice/cage) for four weeks. Social isolation significantly decreased trabecular (BV/TV, BMD, Tb. N., Tb. Th.) and cortical bone (Ct.Th., Ct.Ar., Ct.Ar./Tt.Ar., pMOI, Ct.Por.) parameters in male, but not female mice. Isolated male mice had signs of reduced bone remodeling represented by reduced osteoblast numbers, osteoblast-related gene expression and osteoclast-related gene expression. However, isolated females had increased bone resorption-related gene expression, without any change in bone mass. Overall, our data suggest that social isolation has negative effects on bone in male, but not female mice, although females showed suggestive effects on bone resorption. These results provide critical insight into the effects of isolation on bone and have key clinical implications as we grapple with the long-term health impacts of the rise in social isolation related to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rebecca V Mountain
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA.
| | - Audrie L Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Dorothy Hu
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Christine W Lary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Roux Institute, Northeastern University, Portland, ME, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Mountain RV, Langlais AL, Hu D, Baron R, Lary CW, Motyl KJ. Social Isolation Causes Cortical and Trabecular Bone Loss in Adult Male, but not Female, C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525939. [PMID: 36747686 PMCID: PMC9900878 DOI: 10.1101/2023.01.27.525939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Social isolation is a potent form of psychosocial stress and is a growing public health concern, particularly among older adults. Even prior to the onset of the COVID-19 pandemic, which has significantly increased the prevalence of isolation and loneliness, researchers have been concerned about a rising "epidemic" of loneliness. Isolation is associated with an increased risk for many physical and mental health disorders and increased overall mortality risk. In addition to social isolation, older adults are also at greater risk for osteoporosis and related fractures. While researchers have investigated the negative effects of other forms of psychosocial stress on bone, including depression and PTSD, the effects of social isolation on bone have not been thoroughly investigated. The aim of this study was to test the hypothesis that social isolation would lead to bone loss in male and female C57BL/6J mice. 16-week-old mice were randomized into social isolation (1 mouse/cage) or grouped housing (4 mice/cage) for four weeks (N=16/group). Social isolation significantly decreased trabecular (BV/TV, BMD, Tb. N., Tb. Th.) and cortical bone (Ct.Th., Ct.Ar., Ct.Ar./Tt.Ar., pMOI, Ct.Por.) parameters in male, but not female mice. Isolated male mice had signs of reduced bone remodeling represented by reduced osteoblast numbers, osteoblast-related gene expression and osteoclast-related gene expression. However, isolated females had increased bone resorption-related gene expression, without any change in bone mass. Overall, our data suggest that social isolation has negative effects on bone in males, but not females, although females showed suggestive effects on bone resorption. These results provide critical insight into the effects of isolation on bone and have key clinical implications as we grapple with the long-term health impacts of the rise in social isolation related to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rebecca V. Mountain
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Audrie L. Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Dorothy Hu
- Department of Medicine, Harvard Medical School, and Division of Bone and Mineral Research, and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, and Division of Bone and Mineral Research, and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Christine W. Lary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Roux Institute, Northeastern University, Portland, ME, USA
| | - Katherine J. Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
3
|
Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother 2018; 105:1205-1222. [PMID: 30021357 DOI: 10.1016/j.biopha.2018.05.086] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/09/2022] Open
Abstract
The brain is a vital organ, susceptible to alterations under genetic influences and environmental experiences. Social isolation (SI) acts as a stressor which results in alterations in reactivity to stress, social behavior, function of neurochemical and neuroendocrine system, physiological, anatomical and behavioral changes in both animal and humans. During early stages of life, acute or chronic SIS has been proposed to show signs and symptoms of psychiatric and neurological disorders such as anxiety, depression, schizophrenia, epilepsy and memory loss. Exposure to social isolation stress induces a variety of endocrinological changes including the activation of hypothalamic-pituitary-adrenal (HPA) axis, culminating in the release of glucocorticoids (GCs), release of catecholamines, activation of the sympatho-adrenomedullary system, release of Oxytocin and vasopressin. In several regions of the central nervous system (CNS), SIS alters the level of neurotransmitter such as dopamine, serotonin, gamma aminobutyric acid (GABA), glutamate, nitrergic system and adrenaline as well as leads to alteration in receptor sensitivity of N-methyl-D-aspartate (NMDA) and opioid system. A change in the function of oxidative and nitrosative stress (O&NS) mediated mitochondrial dysfunction, inflammatory factors, neurotrophins and neurotrophicfactors (NTFs), early growth response transcription factor genes (Egr) and C-Fos expression are also involved as a pathophysiological consequences of SIS which induce neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan; Drug Detoxification Health Welfare Research Center, Bannu, KPK, Pakistan
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mazur FG, Oliveira LFG, Cunha MP, Rodrigues ALS, Pértile RAN, Vendruscolo LF, Izídio GS. Effects of physical exercise and social isolation on anxiety-related behaviors in two inbred rat strains. Behav Processes 2017; 142:70-78. [PMID: 28602748 DOI: 10.1016/j.beproc.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed.
Collapse
Affiliation(s)
- F G Mazur
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - L F G Oliveira
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - M P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - A L S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil
| | - R A N Pértile
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil; Queensland Brain Institute, University of Queensland, 4072, Brisbane, Queensland, Australia
| | - L F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, MD 21224, Baltimore, USA
| | - G S Izídio
- Behavior Genetics Laboratory, Department of Cellular Biology, Embryology and Genetics, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Crestani CC. Emotional Stress and Cardiovascular Complications in Animal Models: A Review of the Influence of Stress Type. Front Physiol 2016; 7:251. [PMID: 27445843 PMCID: PMC4919347 DOI: 10.3389/fphys.2016.00251] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023] Open
Abstract
Emotional stress has been recognized as a modifiable risk factor for cardiovascular diseases. The impact of stress on physiological and psychological processes is determined by characteristics of the stress stimulus. For example, distinct responses are induced by acute vs. chronic aversive stimuli. Additionally, the magnitude of stress responses has been reported to be inversely related to the degree of predictability of the aversive stimulus. Therefore, the purpose of the present review was to discuss experimental research in animal models describing the influence of stressor stimulus characteristics, such as chronicity and predictability, in cardiovascular dysfunctions induced by emotional stress. Regarding chronicity, the importance of cardiovascular and autonomic adjustments during acute stress sessions and cardiovascular consequences of frequent stress response activation during repeated exposure to aversive threats (i.e., chronic stress) is discussed. Evidence of the cardiovascular and autonomic changes induced by chronic stressors involving daily exposure to the same stressor (predictable) vs. different stressors (unpredictable) is reviewed and discussed in terms of the impact of predictability in cardiovascular dysfunctions induced by stress.
Collapse
Affiliation(s)
- Carlos C Crestani
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista Araraquara, Brasil
| |
Collapse
|
6
|
Chen C, Yang JM, Hu TT, Xu TJ, Xu WP, Wei W. Elevated dopamine D2 receptor in prefrontal cortex of CUMS rats is associated with downregulated cAMP-independent signaling pathway. Can J Physiol Pharmacol 2013; 91:750-8. [PMID: 23984873 DOI: 10.1139/cjpp-2012-0399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because depression is associated with significant morbidity and functional disability, it is important to reveal the mechanism of action. A variety of studies have suggested the involvement of dopaminergic receptors in the pathophysiological mechanism of non-stress-associated depression-like behavior in rodents. Nevertheless, controversy exists about whether chronic stress acts on dopaminergic receptors in the prefrontal cortex. Thus, we investigated the level of dopamine D2 receptors (DRD2) and the possible mechanisms involved in a chronic unpredictable mild stress (CUMS) rat model of depression. The results showed CUMS-induced, depression-like symptoms in the rat, characterized by reduced sucrose consumption and body mass, and increased duration of immobility in a forced swimming test. Moreover, chronic stress upregulated the expression of DRD2 but downregulated protein kinase A (PKA), transcription factor cAMP response element binding protein (CREB), and phospho-CREB (p-CREB) in the prefrontal cortex, as demonstrated by Western blot. Notably, in the rat model of depression, decreased cyclic adenine monophosphate (cAMP) levels and PKA activity were present at the same time, which is consistent with clinical findings in depressed patients. Our findings suggested that dopaminergic system dysfunction could play a central role in stress-related disorders such as depression.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Hefei 230032, Anhui, China
| | | | | | | | | | | |
Collapse
|
7
|
Clements KM, Wainwright PE. Swim stress increases hippocampal Zif268 expression in the spontaneously hypertensive rat. Brain Res Bull 2010; 82:259-63. [PMID: 20457228 DOI: 10.1016/j.brainresbull.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/09/2010] [Accepted: 05/02/2010] [Indexed: 11/18/2022]
Abstract
The spontaneously hypertensive rat (SHR), which is used as an animal model of ADHD, displays numerous behavioural differences on learning and memory tasks. This study characterises differences in neural Zif268 expression in male SHR, Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats after a 10-min forced swim. Swim stress increased Zif268 expression in the hippocampus of SHR only. In addition, SHR had increased expression in the prefrontal cortex, dorsal striatum and decreased expression in the nucleus accumbens shell in comparison to WKY and SD; and increased expression in the amygdala compared to SD. These findings: (i) support previous research indicating that SHR have altered neurobiological response to stressors, (ii) extends the characterisation of multiple memory systems in SHR to include differences in Zif268 expression in brain regions underlying their altered behaviour and (iii) supports previous findings that SHR may have a specific deficit within the shell of the nucleus accumbens.
Collapse
Affiliation(s)
- K M Clements
- Department of Anatomy & Structural Biology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand.
| | | |
Collapse
|
8
|
Gavrilovic L, Spasojevic N, Dronjak S. Psychosocial stress-related changes in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia of adult rats. Auton Neurosci 2009; 150:144-6. [PMID: 19482560 DOI: 10.1016/j.autneu.2009.05.242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 11/18/2022]
Abstract
In this study we investigated the changes in norepinephrine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) gene expression in the stellate ganglia of naive controls and long-term socially isolated (12 weeks) adult rats and the response of these animals to additional immobilization stress. Psychosocial stress produced a significant increase of both TH mRNA and DBH mRNA levels in stellate ganglia. Additional immobilization of long-term psychosocially stressed rats expressed no effect on gene expression of these enzymes. The results presented here suggest that psychosocial stress-induced increase in gene expression of norepinephrine biosynthetic enzymes in stellate ganglia may be connected to the increased risk of cardiovascular disease.
Collapse
Affiliation(s)
- Ljubica Gavrilovic
- Institute of Nuclear Sciences Vinca, Laboratory of Molecular Biology and Endocrinology, Belgrade, Serbia
| | | | | |
Collapse
|
9
|
Spasojevic N, Gavrilovic L, Kovacevic I, Dronjak S. Effects of antidepressants maprotiline and fluxilan on sympatho-adrenomedullary system in stressed rats. Auton Neurosci 2009; 145:104-7. [DOI: 10.1016/j.autneu.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 09/10/2008] [Accepted: 11/04/2008] [Indexed: 11/17/2022]
|
10
|
Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 2007; 89:85-93. [PMID: 18096212 DOI: 10.1016/j.pbb.2007.11.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022]
Abstract
In order to determine the effect of postnatal environments on some behavioral and neurochemical depressive-like parameters, male Sprague-Dawley rats were reared from weaning in either social isolation, standard laboratory conditions, or environmental enrichment. Open-field activity was assessed at postnatal days 37, 65, 93 and 107 and 1 h before the last open-field test, a forced-swimming test was carried out. After behavioral tests, the monoamines concentrations were analyzed in prefrontal cortex and ventral striatum. Relative to control and isolation rearing, the environmental enrichment reduced open-field activity, led to antidepressive-like effects and increased serotonin concentrations in the prefrontal cortex. Social isolation, on the other hand, did not affect open-field activity, but increased depressive-like behavior and reduced the amount of norepinephrine in the ventral striatum. Those neurochemical changes induced by rearing conditions correlated with the behavioral performance in the forced-swimming test. Also, immobility behavior could be predicted by locomotor activity even from the first week of housing. Overall, specific variations in physical and social environment during early rearing lead to some behavioral and neurochemical alterations which might be relevant for understanding the role that neurodevelopmental and experiential factors could have in human depression.
Collapse
|