1
|
Fujiwara N, Lee D, Li B, Pierro A, Yamataka A. Enhancement of enteric neural stem cell neurogenesis by glial cell-derived neurotrophic factor in experimental Hirschsprung's disease. Pediatr Surg Int 2024; 40:274. [PMID: 39460767 DOI: 10.1007/s00383-024-05861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE Stem cell therapy offers a promising solution for congenital diseases like Hirschsprung's disease (HSCR). Optimizing stem cell efficacy by modifying the cells and their environment is crucial, but in vitro culture conditions need to be further improved. Glial cell-derived neurotrophic factor (GDNF) plays an important role in neuronal survival, proliferation, migration and differentiation during enteric nervous system (ENS) development. In this study, the effects of GDNF on neurites derived from an Ednrb knockout model were investigated with the aim of enhancing the neurogenic potential of enteric neural crest cells (ENCCs). METHODS Neurospheres were generated form Ednrb+/+ (control) and Ednrb-/- mice at embryonic day13.5 (E13.5) with Sox10-green fluorescent protein (Venus) transgenic expression. These neurospheres were cultured in control media and neurospheres from Ednrb-/- were cultured with either control media or media supplemented with GDNF. ENCCs differentiation was assessed using immunofluorescence staining after 18 days. RESULTS GDNF-treated Ednrb-/- neurospheres showed increased size and higher density of Sox10-positive ENCCs compared to untreated Ednrb-/- neurospheres. GDNF also enhanced the distribution of both TUJ1-positive neurons and S100-positive glial cells. CONCLUSION GDNF effectively enhanced the neurogenic potential of ENCCs from HSCR animal model. This finding is crucial for the development of cell therapy in HSCR.
Collapse
Affiliation(s)
- Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Dorothy Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Mombeek LMM, Boesmans W, Wilson DM. Genomic stress in diseases stemming from defects in the second brain. Neurogastroenterol Motil 2024:e14860. [PMID: 39004995 DOI: 10.1111/nmo.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
This review discusses the less-explored realm of DNA damage and repair within the enteric nervous system (ENS), often referred to as the "second brain." While the central nervous system has been extensively studied for its DNA repair mechanisms and associated neuropathologies, the ENS, which can autonomously coordinate gastrointestinal function, experiences unique challenges and vulnerabilities related to its genome integrity. The susceptibility of the ENS to DNA damage is exacerbated by its limited protective barriers, resulting in not only endogenous genotoxic exposures, such as oxidative stress, but also exogenous threats, such as ingested environmental contaminants, local inflammatory responses, and gut dysbiosis. Here, we discuss the evidence for DNA repair defects in enteric neuropathies, most notably, the reported relationship between inherited mutations in RAD21 and LIG3 with chronic intestinal pseudo-obstruction and mitochondrial gastrointestinal encephalomyopathy disorders, respectively. We also introduce the lesser-recognized gastrointestinal complications in DNA repair syndromes, including conditions like Cockayne syndrome. The review concludes by pointing out the potential role of DNA repair defects in not only congenital disorders but also aging-related gut dysfunction, as well as the crucial need for further research to establish direct causal links between DNA damage accumulation and ENS-specific pathologic phenotypes.
Collapse
Affiliation(s)
- Lobke Marie M Mombeek
- Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Werend Boesmans
- Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David M Wilson
- Faculty of Medicine and Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
3
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
4
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
6
|
Natarajan D, McCann C, Dattani J, Pachnis V, Thapar N. Multiple Roles of Ret Signalling During Enteric Neurogenesis. Front Mol Neurosci 2022; 15:832317. [PMID: 35694443 PMCID: PMC9186293 DOI: 10.3389/fnmol.2022.832317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of the enteric nervous system is formed by vagal neural crest cells which enter the foregut and migrate rostrocaudally to colonise the entire length of the gastrointestinal tract. Absence of enteric ganglia from the distal colon are the hallmark of Hirschsprung disease, a congenital disorder characterised by severe intestinal dysmotility. Mutations in the receptor tyrosine kinase RET have been identified in approximately 50% of familial cases of Hirschsprung disease but the cellular processes misregulated in this condition remain unclear. By lineage tracing neural crest cells in mice homozygous for a knock-in allele of Ret (Ret51/51), we demonstrate that normal activity of this receptor is required in vivo for the migration of enteric nervous system progenitors throughout the gut. In mutant mice, progenitors of enteric neurons fail to colonise the distal colon, indicating that failure of colonisation of the distal intestine is a major contributing factor for the pathogenesis of Hirschsprung disease. Enteric nervous system progenitors in the ganglionic proximal guts of mutant mice are also characterised by reduced proliferation and differentiation. These findings suggest that the functional abnormalities in Hirschsprung disease result from a combination of colonic aganglionosis and deficits in neuronal circuitry of more proximal gut segments. The reduced neurogenesis in the gut of Ret51/51 mutants was reproduced in the multilineage enteric nervous system progenitors isolated from these animals. Correction of the molecular defects of such progenitors fully restored their neurogenic potential in culture. These observations enhance our understanding of the pathogenesis of Hirschsprung disease and highlight potential approaches for its treatment.
Collapse
Affiliation(s)
- Dipa Natarajan
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- *Correspondence: Dipa Natarajan,
| | - Conor McCann
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Justine Dattani
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Vassilis Pachnis,
| | - Nikhil Thapar
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Nikhil Thapar,
| |
Collapse
|
7
|
Vidal B, Gulez B, Cao WX, Leyva-Diaz E, Reilly MB, Tekieli T, Hobert O. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. eLife 2022; 11:76003. [PMID: 35324425 PMCID: PMC8989417 DOI: 10.7554/elife.76003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Burcu Gulez
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Wen Xi Cao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Eduardo Leyva-Diaz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Tessa Tekieli
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
8
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
9
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7214639 DOI: 10.1002/sctm.20-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Involvement of Enteric Glia in Small Intestine Neuromuscular Dysfunction of Toll-Like Receptor 4-Deficient Mice. Cells 2020; 9:cells9040838. [PMID: 32244316 PMCID: PMC7226836 DOI: 10.3390/cells9040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Enteric glial cells (EGCs) influence nitric oxide (NO)− and adenosine diphosphate (ADP)− mediated signaling in the enteric nervous system (ENS). Since Toll-like receptor 4 (TLR4) participates to EGC homoeostasis, this study aimed to evaluate the possible involvement of EGCs in the alterations of the inhibitory neurotransmission in TLR4−/− mice. Ileal segments from male TLR4−/− and wild-type (WT) C57BL/6J mice were incubated with the gliotoxin fluoroacetate (FA). Alterations in ENS morphology and neurochemical coding were investigated by immunohistochemistry whereas neuromuscular responses were determined by recording non-adrenergic non-cholinergic (NANC) relaxations in isometrically suspended isolated ileal preparations. TLR4−/− ileal segments showed increased iNOS immunoreactivity associated with enhanced NANC relaxation, mediated by iNOS-derived NO and sensitive to P2Y1 inhibition. Treatment with FA diminished iNOS immunoreactivity and partially abolished NO− and ADP− mediated relaxation in the TLR4−/− mouse ileum, with no changes of P2Y1 and connexin-43 immunofluorescence distribution in the ENS. After FA treatment, S100β and GFAP immunoreactivity in TLR4−/− myenteric plexus was reduced to levels comparable to those observed in WT. Our findings show the involvement of EGCs in the alterations of ENS architecture and in the increased purinergic and nitrergic-mediated relaxation, determining gut dysmotility in TLR4−/− mice.
Collapse
|
11
|
Mendes CE, Palombit K, Tavares-de-Lima W, Castelucci P. Enteric glial cells immunoreactive for P2X7 receptor are affected in the ileum following ischemia and reperfusion. Acta Histochem 2019; 121:665-679. [PMID: 31202513 DOI: 10.1016/j.acthis.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effect of ischemia and reperfusion injury (IS) on enteric glial cells (EGCs) and neurons immunoreactive for the P2X7 receptor. Intestinal ischemia was induced by obstructing blood flow in the ileal vessels for 35 min. Afterwards, the vessels were reperfused for 14 days. Tissues were prepared for immunohistochemical labeling of P2X7 receptor, HuC/D (Hu) (pan-neuronal marker) and S100β (glial marker); HuC/D (Hu) and glial fibrillary acidic protein (GFAP, glial marker)/DAPI (nuclear marker); or S100β and GFAP/DAPI. Qualitative and quantitative analyses of colocalization, density, profile area and cell proliferation were performed via fluorescence and confocal laser scanning microscopy. The quantitative analyses revealed that a) neurons and EGCs were immunoreactive for P2X7 receptor; b) the P2X7 receptor immunoreactive cells and Hu immunoreactive neurons were reduced after 0 h and 14 days of reperfusion; c) the S100β and GFAP immunoreactive EGCs were increased; d) the profile area of S100β immunoreactive EGCs was increased by IS; e) few GFAP immunoreactive proliferated at 14 days of reperfusion; f) distinct populations of glial cells can be discerned: S100β+/GFAP+ cells, S100β+/GFAP- cells and S100β-/GFAP + cells; g) histological analysis revealed less alterations in the epithelium cells in the IS groups and h) myeloperoxidase reaction revealed increased of the neutrophils in the lamina propria in the IS groups. This study showed that IS is associated with significant neuronal loss, increase of glial cells and altered purinergic receptor expression and that these changes may contribute to intestinal disorders.
Collapse
|
12
|
Vergnolle N, Cirillo C. Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology (Bethesda) 2019; 33:269-280. [PMID: 29897300 DOI: 10.1152/physiol.00009.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial barrier is the largest exchange surface between the body and the external environment. Its functions are regulated by luminal, and also internal, components including the enteric nervous system. This review summarizes current knowledge about the role of the digestive "neuronal-glial-epithelial unit" on epithelial barrier function.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Carla Cirillo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse , France.,Laboratory for Enteric Neuroscience, TARGID, University of Leuven , Leuven , Belgium
| |
Collapse
|
13
|
Zalecki M, Pidsudko Z, Franke-Radowiecka A, Wojtkiewicz J, Kaleczyc J. Galaninergic intramural nerve and tissue reaction to antral ulcerations. Neurogastroenterol Motil 2018; 30:e13360. [PMID: 29717796 DOI: 10.1111/nmo.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/25/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Well-developed galaninergic gastric intramural nerve system is known to regulate multiple stomach functions in physiological and pathological conditions. Stomach ulcer, a disorder commonly occurring in humans and animals, is accompanied by inflammatory reaction. Inflammation can cause intramural neurons to change their neurochemical profile. Galanin and its receptors are involved in inflammation of many organs, however, their direct participation in stomach reaction to ulcer is not known. Therefore, the aim of the study was to investigate adaptive changes in the chemical coding of galaninergic intramural neurons and mRNA expression encoding Gal, GalR1, GalR2, GalR3 receptors in the region of the porcine stomach directly adjacent to the ulcer location. METHODS The experiment was performed on 24 pigs, divided into control and experimental groups. In 12 experimental animals, stomach antrum ulcers were experimentally induced by submucosal injection of acetic acid solution. Stomach wall directly adjacent to the ulcer was examined by: (1) double immunohistochemistry-to verify the changes in the number of galaninergic neurons (submucosal, myenteric) and fibers; (2) real-time PCR to verify changes in mRNA expression encoding galanin, GalR1, GalR2, GalR3 receptors. KEY RESULTS In the experimental animals, the number of Gal-immunoreactive submucosal perikarya was increased, while the number of galaninergic myenteric neurons and fibers (in all the stomach wall layers) remained unchanged. The expression of mRNA encoding all galanin receptors was increased. CONCLUSIONS & INTERFERENCES The results obtained unveiled the participation of galanin and galanin receptors in the stomach tissue response to antral ulcerations.
Collapse
Affiliation(s)
- M Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Z Pidsudko
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - A Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Wojtkiewicz
- Department of Pathophysiology, Laboratory for Regenerative Medicine, Faculty of Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - J Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
14
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
15
|
Mechanism of development of depression and probiotics as adjuvant therapy for its prevention and management. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.mhp.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
McKeown SJ, Mohsenipour M, Bergner AJ, Young HM, Stamp LA. Exposure to GDNF Enhances the Ability of Enteric Neural Progenitors to Generate an Enteric Nervous System. Stem Cell Reports 2017; 8:476-488. [PMID: 28089669 PMCID: PMC5312076 DOI: 10.1016/j.stemcr.2016.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
Cell therapy is a promising approach to generate an enteric nervous system (ENS) and treat enteric neuropathies. However, for translation to the clinic, it is highly likely that enteric neural progenitors will require manipulation prior to transplantation to enhance their ability to migrate and generate an ENS. In this study, we examine the effects of exposure to several factors on the ability of ENS progenitors, grown as enteric neurospheres, to migrate and generate an ENS. Exposure to glial-cell-line-derived neurotrophic factor (GDNF) resulted in a 14-fold increase in neurosphere volume and a 12-fold increase in cell number. Following co-culture with embryonic gut or transplantation into the colon of postnatal mice in vivo, cells derived from GDNF-treated neurospheres showed a 2-fold increase in the distance migrated compared with controls. Our data show that the ability of enteric neurospheres to generate an ENS can be enhanced by exposure to appropriate factors. Enteric neurospheres are likely to require manipulation for clinical applications Exposure to GDNF increased the size and cell number in enteric neurospheres GDNF-treated neurospheres showed enhanced migration after transplantation in vivo Manipulation of enteric neurospheres can enhance the generation of enteric neurons
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia; Cancer Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Mitra Mohsenipour
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
17
|
Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol 2016; 14:94. [PMID: 27776507 PMCID: PMC5075986 DOI: 10.1186/s12915-016-0314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. Results Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. Conclusions Our experiments demonstrate that, in mammals, NC-derived ENS lineages are sensitive to genotoxic stress in a stage-specific manner. Following gut invasion, ENS progenitors are distinctly resistant to Gem ablation and irradiation in comparison to their pre-enteric counterparts. These studies suggest that the microenvironment of the embryonic gut protects ENS progenitors and their progeny from genotoxic stress. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chrysoula Konstantinidou
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.,Present address: MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, GR 26 500, Greece.
| | - Vassilis Pachnis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
18
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
19
|
Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, Avetisyan M, Johnson SL, Stenson WF, Goldstein AM, Heuckeroth RO. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409:473-88. [PMID: 26586201 PMCID: PMC4862364 DOI: 10.1016/j.ydbio.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jonathan I Lake
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Olga A Tusheva
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Saya K Bery
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lynne Foster
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Marina Avetisyan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William F Stenson
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Young HM, Stamp LA, McKeown SJ. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:53-62. [PMID: 27379634 DOI: 10.1007/978-3-319-27592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
21
|
De Giorgio R, Bianco F, Latorre R, Caio G, Clavenzani P, Bonora E. Enteric neuropathies: Yesterday, Today and Tomorrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:123-33. [PMID: 27379640 DOI: 10.1007/978-3-319-27592-5_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enteric neuropathy is a term indicating an impairment of the innervation supplying the gastrointestinal tract. The clinical phenotypes of the enteric neuropathies are the 'tip of the iceberg' of severe functional digestive diseases, such as intestinal pseudo-obstruction syndromes (e.g., chronic intestinal pseudo-obstruction). Despite progress acquired over the years, the pathogenetic mechanisms leading to enteric neuropathies are still far from being elucidated and the therapeutic approaches to these patients are mainly supportive, rather than curative.The purpose of this chapter is to review the advancements that have been done in the knowledge of enteric neuropathies identified in adult patients ('tomorrow'), going through where we currently are ('today') following a brief history of the major milestones on the pioneering discoveries in the field ('yesterday').
Collapse
Affiliation(s)
- Roberto De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy.
- Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy.
| | - Francesca Bianco
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
- Department of Medical and Veterinary Sciences, University of Bologna, Bologna, Italy
| | - Rocco Latorre
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
- Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, Bologna, Italy
| | - Giacomo Caio
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| | - Paolo Clavenzani
- Department of Medical and Veterinary Sciences, University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Via Massarenti 9, Bologna, Italy
| |
Collapse
|
22
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
23
|
Halliez MCM, Buret AG. Gastrointestinal Parasites and the Neural Control of Gut Functions. Front Cell Neurosci 2015; 9:452. [PMID: 26635531 PMCID: PMC4658430 DOI: 10.3389/fncel.2015.00452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/02/2015] [Indexed: 12/30/2022] Open
Abstract
Gastrointestinal motility and transport of water and electrolytes play key roles in the pathophysiology of diarrhea upon exposure to enteric parasites. These processes are actively modulated by the enteric nervous system (ENS), which includes efferent, and afferent neurons, as well as interneurons. ENS integrity is essential to the maintenance of homeostatic gut responses. A number of gastrointestinal parasites are known to cause disease by altering the ENS. The mechanisms remain incompletely understood. Cryptosporidium parvum, Giardia duodenalis (syn. Giardia intestinalis, Giardia lamblia), Trypanosoma cruzi, Schistosoma species and others alter gastrointestinal motility, absorption, or secretion at least in part via effects on the ENS. Recent findings also implicate enteric parasites such as C. parvum and G. duodenalis in the development of post-infectious complications such as irritable bowel syndrome, which further underscores their effects on the gut-brain axis. This article critically reviews recent advances and the current state of knowledge on the impact of enteric parasitism on the neural control of gut functions, and provides insights into mechanisms underlying these abnormalities.
Collapse
Affiliation(s)
- Marie C M Halliez
- Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary Calgary, AB, Canada ; Protozooses transmises par l'alimentation, Rouen University Hospital, University of Rouen and Institute for Biomedical Research, University of Reims Champagne-Ardennes Rouen and Reims, France
| | - André G Buret
- Department of Biological Sciences, Inflammation Research Network, Host-Parasite Interaction NSERC-CREATE, University of Calgary Calgary, AB, Canada
| |
Collapse
|
24
|
Capoccia E, Cirillo C, Gigli S, Pesce M, D’Alessandro A, Cuomo R, Sarnelli G, Steardo L, Esposito G. Enteric glia: A new player in inflammatory bowel diseases. Int J Immunopathol Pharmacol 2015; 28:443-51. [DOI: 10.1177/0394632015599707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to the well-known involvement of macrophages and neutrophils, other cell types have been recently reported to substantially contribute to the onset and progression of inflammatory bowel diseases (IBD). Enteric glial cells (EGC) are the equivalent cell type of astrocyte in the central nervous system (CNS) and share with them many neurotrophic and neuro-immunomodulatory properties. This short review highlights the role of EGC in IBD, describing the role played by these cells in the maintenance of gut homeostasis, and their modulation of enteric neuronal activities. In pathological conditions, EGC have been reported to trigger and support bowel inflammation through the specific over-secretion of S100B protein, a pivotal neurotrophic factor able to induce chronic inflammatory changes in gut mucosa. New pharmacological tools that may improve the current therapeutic strategies for inflammatory bowel diseases (IBD), lowering side effects (i.e. corticosteroids) and costs (i.e. anti-TNFα monoclonal antibodies) represent a very important challenge for gastroenterologists and pharmacologists. Novel drugs capable to modulate enteric glia reactivity, limiting the pro-inflammatory release of S100B, may thus represent a significant innovation in the field of pharmacological interventions for inflammatory bowel diseases.
Collapse
Affiliation(s)
- E Capoccia
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - C Cirillo
- Laboratory for Enteric NeuroScience (LENS), TARGID, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - S Gigli
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M Pesce
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - A D’Alessandro
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - R Cuomo
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - G Sarnelli
- Department of Clinical and Experimental Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - L Steardo
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Esposito
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, University Sapienza of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
25
|
Lin R, Ding Z, Ma H, Shi H, Gao Y, Qian W, Shi W, Sun Z, Hou X, Li X. In Vitro Conditioned Bone Marrow-Derived Mesenchymal Stem Cells Promote De Novo Functional Enteric Nerve Regeneration, but Not Through Direct-Transdifferentiation. Stem Cells 2015; 33:3545-57. [PMID: 26302722 DOI: 10.1002/stem.2197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 07/09/2015] [Accepted: 07/25/2015] [Indexed: 01/05/2023]
Abstract
Injury or neurodegenerative disorders of the enteric nervous system (ENS) cause gastrointestinal dysfunctions for which there is no effective therapy. This study, using the benzalkonium chloride-induced rat gastric denervation model, aimed to determine whether transplantation of bone marrow-derived mesenchymal stem cells (BMSC) could promote ENS neuron regeneration and if so, to elucidate the mechanism. Fluorescently labeled BMSC, isolated from either WT (BMSC labeled with bis-benzimide [BBM]) or green fluorescent protein (GFP)-transgenic rats, were preconditioned in vitro using fetal gut culture media containing glial cell-derived neurotrophic factor (GDNF), and transplanted subserosally into the denervated area of rat pylorus. In the nerve-ablated pylorus, grafted BMSC survived and migrated from the subserosa to the submucosa 28 days after transplantation, without apparent dedifferentiation. A massive number of PGP9.5/NSE/HuC/D/Tuj1-positive (but GFP- and BBM-negative) neurons were effectively regenerated in denervated pylorus grafted with preconditioned BMSC, suggesting that they were regenerated de novo, not originating from trans-differentiation of the transplanted BMSC. BMSC transplantation restored both basal pyloric contractility and electric field stimulation-induced relaxation. High levels of GDNF were induced in both in vitro-preconditioned BMSC as well as the previously denervated pylorus after transplantation of preconditioned BMSC. Thus, a BMSC-initiated GDNF-positive feedback mechanism is suggested to promote neuron regeneration and growth. In summary, we have demonstrated that allogeneically transplanted preconditioned BMSC initiate de novo regeneration of gastric neuronal cells/structures that in turn restore gastric contractility in pylorus-denervated rats. These neuronal structures did not originate from the grafted BMSC. Our data suggest that preconditioned allogeneic BMSC may have therapeutic value in treating enteric nerve disorders.
Collapse
Affiliation(s)
- Rong Lin
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhen Ding
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huan Ma
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Division of Gastroenterology, Qingdao Municipal Hospital, Qingdao, People's Republic of China
| | - Huiying Shi
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanjun Gao
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weina Shi
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuhang Li
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Arab HA, Muhammadnejad S, Faghihi SM, Hassanpour H, Muhammadnejad A. Effects of nitric oxide modulating activities on development of enteric nervous system mediated gut motility in chick embryo model. J Biosci 2015; 39:835-48. [PMID: 25431412 DOI: 10.1007/s12038-014-9474-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The enteric nervous system (ENS) arises from the enteric neural crest-derived cells (ENCCs), and many molecules and biochemical processes may be involved in its development. This study examined the effects of modulating embryonic nitric oxide (NO) activity on the intestinal motility induced by ENS. One-hundred-and-twenty fertilized chicken eggs were assigned to three main groups and incubated at 37 degrees Centigrade and 60 percent humidity. The eggs were treated with NG-nitro-Larginine methyl ester (L-NAME), sodium nitroprusside (SNP), L-arginine (L-Arg) or vehicle from days 3 (1st group), 7 (2nd group) and 10 (3rd group) of incubation and continued up to day 18. On day 19, the embryos were sacrificed, the jejunal and colorectal segments were taken and the intestinal motility was assessed using isolated organ system. The intestinal motility was recorded normally and following cholinergic, adrenergic and non-adrenergic non-cholinergic (NANC) stimulations. The ENS structure was assessed by immunohistochemistry (IHC) using glial fibrillary acidic protein (GFAP). Rhythmic intestinal contractions were seen in all treatment groups, but inhibition of NO in the LNAME- treated embryos caused significant decrease (p less than 0.01) in the frequency and amplitude of the contraction. The responsiveness to adrenergic, cholinergic and NANC stimulations was also significantly decreased (p less than 0.05). The GFAP expression was significantly (p less than 0.05) reduced in the L-NAME-treated embryos. This study showed that the inhibition of NO caused a deficient development of the ENS, leading to a decrease in the frequency and amplitude of the intestinal contractions and reduced the responsiveness to adrenergic, cholinergic and NANC signalling.
Collapse
Affiliation(s)
- Hossein-Ali Arab
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,
| | | | | | | | | |
Collapse
|
27
|
Hirst CS, Foong JPP, Stamp LA, Fegan E, Dent S, Cooper EC, Lomax AE, Anderson CR, Bornstein JC, Young HM, McKeown SJ. Ion channel expression in the developing enteric nervous system. PLoS One 2015; 10:e0123436. [PMID: 25798587 PMCID: PMC4370736 DOI: 10.1371/journal.pone.0123436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.
Collapse
Affiliation(s)
- Caroline S. Hirst
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Jaime P. P. Foong
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A. Stamp
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Emily Fegan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Stephan Dent
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan E. Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Colin R. Anderson
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Joel C. Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M. Young
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Sonja J. McKeown
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Grundmann D, Klotz M, Rabe H, Glanemann M, Schäfer KH. Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract. Sci Rep 2015; 5:9226. [PMID: 25791532 DOI: 10.1038/srep09226] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/11/2015] [Indexed: 01/19/2023] Open
Abstract
The enteric nervous system (ENS) orchestrates a broad range of important gastrointestinal functions such as intestinal motility and gastric secretion. The ENS can be affected by environmental factors, diet and disease. Changes due to these alterations are often hard to evaluate in detail when whole gut samples are used. Analyses based on pure ENS tissue can more effectively reflect the ongoing changes during pathological processes. Here, we present an optimized approach for the isolation of pure myenteric plexus (MP) from adult mouse and human. To do so, muscle tissue was individually digested with a purified collagenase. After incubation and a gentle mechanical disruption step, MP networks could be collected with anatomical integrity. These tissues could be stored and used either for immediate genomic, proteomic or in vitro approaches, and enteric neurospheres could be generated and differentiated. In a pilot experiment, the influence of bacterial lipopolysaccharide on human MP was analyzed using 2-dimensional gel electrophoresis. The method also allows investigation of factors that are secreted by myenteric tissue in vitro. The isolation of pure MP in large amounts allows new analytical approaches that can provide a new perspective in evaluating changes of the ENS in experimental models, human disease and aging.
Collapse
Affiliation(s)
- David Grundmann
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Markus Klotz
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Holger Rabe
- ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Matthias Glanemann
- Department of General, Visceral, Vascular and Pediatric Surgery, Medical Faculty of the University of Saarland, Homburg/Saar, Germany
| | - Karl-Herbert Schäfer
- 1] ENS Group, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany [2] University of Heidelberg, Paediatric Surgery Mannheim, Germany
| |
Collapse
|
29
|
Findlay Q, Yap KK, Bergner AJ, Young HM, Stamp LA. Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon. Am J Physiol Gastrointest Liver Physiol 2014; 307:G741-8. [PMID: 25125684 DOI: 10.1152/ajpgi.00225.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut motility disorders can result from an absent, damaged, or dysfunctional enteric nervous system (ENS). Cell therapy is an exciting prospect to treat these enteric neuropathies and restore gut motility. Previous studies have examined a variety of sources of stem/progenitor cells, but the ability of different sources of cells to generate enteric neurons has not been directly compared. It is important to identify the source of stem/progenitor cells that is best at colonizing the bowel and generating neurons following transplantation. The aim of this study was to compare the ability of central nervous system (CNS) progenitors and ENS progenitors to colonize the colon and differentiate into neurons. Genetically labeled CNS- and ENS-derived progenitors were cocultured with aneural explants of embryonic mouse colon for 1 or 2.5 wk to assess their migratory, proliferative, and differentiation capacities, and survival, in the embryonic gut environment. Both progenitor cell populations were transplanted in the postnatal colon of mice in vivo for 4 wk before they were analyzed for migration and differentiation using immunohistochemistry. ENS-derived progenitors migrated further than CNS-derived cells in both embryonic and postnatal gut environments. ENS-derived progenitors also gave rise to more neurons than their CNS-derived counterparts. Furthermore, neurons derived from ENS progenitors clustered together in ganglia, whereas CNS-derived neurons were mostly solitary. We conclude that, within the gut environment, ENS-derived progenitors show superior migration, proliferation, and neuronal differentiation compared with CNS progenitors.
Collapse
Affiliation(s)
- Quan Findlay
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Kiryu K Yap
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Gonsalvez DG, Li-Yuen-Fong M, Cane KN, Stamp LA, Young HM, Anderson CR. Different neural crest populations exhibit diverse proliferative behaviors. Dev Neurobiol 2014; 75:287-301. [DOI: 10.1002/dneu.22229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/02/2023]
Affiliation(s)
- David G. Gonsalvez
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Mathew Li-Yuen-Fong
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Kylie N. Cane
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Lincon A. Stamp
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Heather M. Young
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| | - Colin R. Anderson
- Department of Anatomy and Neuroscience; University of Melbourne; Victoria 3010 Australia
| |
Collapse
|
31
|
Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 2014; 522:514-27. [PMID: 23861145 DOI: 10.1002/cne.23423] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022]
Abstract
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype.
Collapse
Affiliation(s)
- Annette J Bergner
- Department of Anatomy & Neuroscience, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamada M, Clark J, Iulianella A. MLLT11/AF1q is differentially expressed in maturing neurons during development. Gene Expr Patterns 2014; 15:80-7. [PMID: 24839873 DOI: 10.1016/j.gep.2014.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/03/2014] [Accepted: 05/05/2014] [Indexed: 12/13/2022]
Abstract
Myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11 or ALL1 fused from chromosome 1q (MLLT11/AF1q) is a highly conserved 90 amino acid protein that functions in hematopoietic differentiation. Its translocation to the Trithorax locus has been implicated in malignancies of the hematopoietic system. However, the spatio-temporal profile of MLLT11 expression during embryonic development has not been characterized. Here we show that MLLT11 has a remarkably specific expression pattern in the developing central and peripheral nervous system. We find high levels of MLLT11 transcript and protein expression in the developing marginal zone of the cortex and spinal cord. MLLT11 co-localized with Tbr2 in the developing subplate region of the cortex and expanded to encompass the cortical plate at late fetal stages. Expression in the peripheral nervous system initiated at E9.5 in the facio-acoustic cranial ganglia and elaborated to identify all the cranio-facial and dorsal root ganglia by E10.5. We also observed expression in the eye and gastrointestinal tract, where MLLT11 transcripts localized to Tuj1-positive inner retinal layer and autonomic neurons, respectively. Altogether these results show that MLLT11 is a pan-neuronal marker, suggesting a role in neural differentiation in the central nervous system and neural crest-cell derived peripheral ganglia.
Collapse
Affiliation(s)
- Makiko Yamada
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jessica Clark
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
33
|
Abstract
Although the idea that gastric problems are in some way related to mental activity dates back to the beginning of the last century, until now it has received scant attention by physiologists, general practitioners and gastroenterologists. The major breakthrough in understanding the interactions between the central nervous system and the gut was the discovery of the enteric nervous system (ENS) in the 19th century. ENS (also called 'little brain') plays a crucial role in the regulation of the physiological gut functions. Furthermore, the identification of corticotropin-releasing factor (CRF) and the development of specific CRF receptor antagonists have permitted to characterize the neurochemical basis of the stress response. The neurobiological response to stress in mammals involves three key mechanisms: (1) stress is perceived and processed by higher brain centers; (2) the brain mounts a neuroendocrine response by way of the hypothalamic-pituitary-adrenal axis (HPA) and the autonomic nervous system (ANS), and (3) the brain triggers feedback mechanisms by HPA and ANS stimulation to restore homeostasis. Various stressors such as anger, fear, painful stimuli, as well as life or social learning experiences affect both the individual's physiologic and gastric function, revealing a two-way interaction between brain and stomach. There is overwhelming experimental and clinical evidence that stress influences gastric function, thereby outlining the pathogenesis of gastric diseases such as functional dyspepsia, gastroesophageal reflux disease and peptic ulcer disease. A better understanding of the role of pathological stressors in the modulation of disease activity may have important pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | | |
Collapse
|
34
|
Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 2014; 12:23. [PMID: 24670214 PMCID: PMC4101823 DOI: 10.1186/1741-7007-12-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne 3010 VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Fernández RM, Bleda M, Luzón-Toro B, García-Alonso L, Arnold S, Sribudiani Y, Besmond C, Lantieri F, Doan B, Ceccherini I, Lyonnet S, Hofstra RMW, Chakravarti A, Antiñolo G, Dopazo J, Borrego S. Pathways systematically associated to Hirschsprung's disease. Orphanet J Rare Dis 2013; 8:187. [PMID: 24289864 PMCID: PMC3879038 DOI: 10.1186/1750-1172-8-187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/19/2013] [Indexed: 02/08/2023] Open
Abstract
Despite it has been reported that several loci are involved in Hirschsprung's disease, the molecular basis of the disease remains yet essentially unknown. The study of collective properties of modules of functionally-related genes provides an efficient and sensitive statistical framework that can overcome sample size limitations in the study of rare diseases. Here, we present the extension of a previous study of a Spanish series of HSCR trios to an international cohort of 162 HSCR trios to validate the generality of the underlying functional basis of the Hirschsprung's disease mechanisms previously found. The Pathway-Based Analysis (PBA) confirms a strong association of gene ontology (GO) modules related to signal transduction and its regulation, enteric nervous system (ENS) formation and other processes related to the disease. In addition, network analysis recovers sub-networks significantly associated to the disease, which contain genes related to the same functionalities, thus providing an independent validation of these findings. The functional profiles of association obtained for patients populations from different countries were compared to each other. While gene associations were different at each series, the main functional associations were identical in all the five populations. These observations would also explain the reported low reproducibility of associations of individual disease genes across populations.
Collapse
Affiliation(s)
- Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Marta Bleda
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Luz García-Alonso
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
| | - Stacey Arnold
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yunia Sribudiani
- Department of Medical Genetics, University of Groningen, Groningen, The Netherlands
| | - Claude Besmond
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | | | - Betty Doan
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Robert MW Hofstra
- Department of Medical Genetics, University of Groningen, Groningen, The Netherlands
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Joaquín Dopazo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe (CIPF), c/Eduardo Primo Yufera, 3, Valencia, 46012, Spain
- Functional Genomics Node (INB), CIPF, Valencia, Spain
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Av. Manuel Siurot s/n, Seville, 41013, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
36
|
Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ. Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 2013; 385:220-9. [PMID: 24262984 PMCID: PMC3928993 DOI: 10.1016/j.ydbio.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa(120/120) or Tie2-Cre;Nrp1(fl/-) mice or using an in vitro Wnt1-Cre;Rosa26(Yfp/+) mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet(51) mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.
Collapse
Affiliation(s)
- Jean-Marie Delalande
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Dipa Natarajan
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Bertrand Vernay
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Malcolm Finlay
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Nikhil Thapar
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Alan J Burns
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Department of Clinical Genetics, The Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Common genetic variations in Patched1 (PTCH1) gene and risk of hirschsprung disease in the Han Chinese population. PLoS One 2013; 8:e75407. [PMID: 24073265 PMCID: PMC3779180 DOI: 10.1371/journal.pone.0075407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is the most frequent genetic cause of congenital intestinal obstruction with an incidence of 1:5000 live births. In a pathway-based epistasis analysis of data generated by genome-wide association study on HSCR, specific genotype of Patched 1 (PTCH1) has been linked to an increased risk for HSCR. The aim of the present study is to examine the contribution of genetic variants in PTCH1 to the susceptibility to HSCR in Han Chinese. Accordingly, we assessed 8 single nucleotide polymorphisms (SNPs) within PTCH1 gene in 104 subjects with sporadic HSCR and 151 normal controls of Han Chinese origin by the Sequenom MassArray technology (iPLEX GOLD). Two of the eight genetic markers were found to be significantly associated with Hirschsprung disease (rs357565, allele P = 0.005; rs2236405, allele P = 0.002, genotype P = 0.003). Both the C allele of rs357565 and the A allele of rs2236405 served as risk factors for HSCR. During haplotype analysis, one seven-SNP-based haplotype was the most significant, giving a global P = 0.0036. Our results firstly suggest common variations of PTCH1 may be involved in the altered risk for HSCR in the Han Chinese population, providing potential molecular markers for early diagnosis of Hirschsprung disease.
Collapse
|
38
|
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24. [PMID: 23639815 PMCID: PMC3725693 DOI: 10.1152/ajpgi.00452.2012] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.
Collapse
Affiliation(s)
- Jonathan I. Lake
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and ,2Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
39
|
Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 2013; 162:1-15. [PMID: 23528997 PMCID: PMC3691347 DOI: 10.1016/j.trsl.2013.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
The enteric nervous system is the part of the autonomic nervous system that directly controls the gastrointestinal tract. Derived from a multipotent, migratory cell population called the neural crest, a complete enteric nervous system is necessary for proper gut function. Disorders that arise as a consequence of defective neural crest cell development are termed neurocristopathies. One such disorder is Hirschsprung disease (HSCR), also known as congenital megacolon or intestinal aganglionosis. HSCR occurs in 1/5000 live births and typically presents with the inability to pass meconium, along with abdominal distension and discomfort that usually requires surgical resection of the aganglionic bowel. This disorder is characterized by a congenital absence of neurons in a portion of the intestinal tract, usually the distal colon, because of a disruption of normal neural crest cell migration, proliferation, differentiation, survival, and/or apoptosis. The inheritance of HSCR disease is complex, often non-Mendelian, and characterized by variable penetrance. Extensive research has identified a number of key genes that regulate neural crest cell development in the pathogenesis of HSCR including RET, GDNF, GFRα1, NRTN, EDNRB, ET3, ZFHX1B, PHOX2b, SOX10, and SHH. However, mutations in these genes account for only ∼50% of the known cases of HSCR. Thus, other genetic mutations and combinations of genetic mutations and modifiers likely contribute to the etiology and pathogenesis of HSCR. The aims of this review are to summarize the HSCR phenotype, diagnosis, and treatment options; to discuss the major genetic causes and the mechanisms by which they disrupt normal enteric neural crest cell development; and to explore new pathways that may contribute to HSCR pathogenesis.
Collapse
|
40
|
Obermayr F, Stamp LA, Anderson CR, Young HM. Genetic fate-mapping of tyrosine hydroxylase-expressing cells in the enteric nervous system. Neurogastroenterol Motil 2013; 25:e283-91. [PMID: 23438425 DOI: 10.1111/nmo.12105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND During development of the enteric nervous system, a subpopulation of enteric neuron precursors transiently expresses catecholaminergic properties. The progeny of these transiently catecholaminergic (TC) cells have not been fully characterized. METHODS We combined in vivo Cre-lox-based genetic fate-mapping with phenotypic analysis to fate-map enteric neuron subtypes arising from tyrosine hydroxylase (TH)-expressing cells. KEY RESULTS Less than 3% of the total (Hu(+) ) neurons in the myenteric plexus of the small intestine of adult mice are generated from transiently TH-expressing cells. Around 50% of the neurons generated from transiently TH-expressing cells are calbindin neurons, but their progeny also include calretinin, neurofilament-M, and serotonin neurons. However, only 30% of the serotonin neurons and small subpopulations (<10%) of the calbindin, calretinin, and neurofilament-M neurons are generated from TH-expressing cells; only 0.2% of nitric oxide synthase neurons arise from TH-expressing cells. CONCLUSIONS & INFERENCES Transiently, catecholaminergic cells give rise to subpopulations of multiple enteric neuron subtypes, but the majority of each of the neuron subtypes arises from non-TC cells.
Collapse
Affiliation(s)
- F Obermayr
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
41
|
Knowles CH, Lindberg G, Panza E, De Giorgio R. New perspectives in the diagnosis and management of enteric neuropathies. Nat Rev Gastroenterol Hepatol 2013; 10:206-18. [PMID: 23399525 DOI: 10.1038/nrgastro.2013.18] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic disturbances of gastrointestinal function encompass a wide spectrum of clinical disorders that range from common conditions with mild-to-moderate symptoms to rare diseases characterized by a severe impairment of digestive function, including chronic pain, vomiting, bloating and severe constipation. Patients at the clinically severe end of the spectrum can have profound changes in gut transit and motility. In a subset of these patients, histopathological analyses have revealed abnormalities of the gut innervation, including the enteric nervous system, termed enteric neuropathies. This Review discusses advances in the diagnosis and management of the main clinical entities--achalasia, gastroparesis, intestinal pseudo-obstruction and chronic constipation--that result from enteric neuropathies, including both primary and secondary forms. We focus on the various evident neuropathologies (degenerative and inflammatory) of these disorders and, where possible, present the specific implications of histological diagnosis to contemporary treatment. This knowledge could enable the future development of novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Charles H Knowles
- Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK
| | | | | | | |
Collapse
|
42
|
Barlow AJ, Dixon J, Dixon M, Trainor PA. Tcof1 acts as a modifier of Pax3 during enteric nervous system development and in the pathogenesis of colonic aganglionosis. Hum Mol Genet 2013; 22:1206-17. [PMID: 23283078 DOI: 10.1093/hmg/dds528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hirschsprung disease (HSCR) is a human congenital disorder, defined by the absence of ganglia from variable lengths of the colon. These ganglia comprise the enteric nervous system (ENS) and are derived from migratory neural crest cells (NCCs). The inheritance of HSCR is complex, often non-Mendelian and characterized by variable penetrance. Although extensive research has identified many key players in the pathogenesis of Hirschsprung disease, a large number of cases remain genetically undefined. Therefore, additional unidentified genes or modifiers must contribute to the etiology and pathogenesis of Hirschsprung disease. We have discovered that Tcof1 may be one such modifier. Haploinsufficiency of Tcof1 in mice results in a reduction of vagal NCCs and their delayed migration along the length of the gut during early development. This alone, however, is not sufficient to cause colonic aganglionosis as alterations in the balance of NCC proliferation and differentiation ensures NCC colonize the entire length of the gut of Tcof1(+/-) mice by E18.5. In contrast, Tcof1 haploinsufficiency is able to sensitize Pax3(+/-) mice to colonic aganglionosis. Although, Pax3 heterozygous mice do not show ENS defects, compound Pax3;Tcof1 heterozygous mice exhibit cumulative apoptosis which severely reduces the NCC population that migrates into the foregut. In addition, the proliferative capacity of these NCC is also diminished. Taken together with the opposing effects of Pax3 and Tcof1 on NCC differentiation, the synergistic haploinsufficiency of Tcof1 and Pax3 results in colonic aganglionosis in mice and may contribute to the pathogenesis of Hirschsprung disease.
Collapse
Affiliation(s)
- Amanda J Barlow
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
43
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
44
|
Fernández RM, Bleda M, Núñez-Torres R, Medina I, Luzón-Toro B, García-Alonso L, Torroglosa A, Marbà M, Enguix-Riego MV, Montaner D, Antiñolo G, Dopazo J, Borrego S. Four new loci associations discovered by pathway-based and network analyses of the genome-wide variability profile of Hirschsprung's disease. Orphanet J Rare Dis 2012; 7:103. [PMID: 23270508 PMCID: PMC3575329 DOI: 10.1186/1750-1172-7-103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
Finding gene associations in rare diseases is frequently hampered by the reduced numbers of patients accessible. Conventional gene-based association tests rely on the availability of large cohorts, which constitutes a serious limitation for its application in this scenario. To overcome this problem we have used here a combined strategy in which a pathway-based analysis (PBA) has been initially conducted to prioritize candidate genes in a Spanish cohort of 53 trios of short-segment Hirschsprung’s disease. Candidate genes have been further validated in an independent population of 106 trios. The study revealed a strong association of 11 gene ontology (GO) modules related to signal transduction and its regulation, enteric nervous system (ENS) formation and other HSCR-related processes. Among the preselected candidates, a total of 4 loci, RASGEF1A, IQGAP2, DLC1 and CHRNA7, related to signal transduction and migration processes, were found to be significantly associated to HSCR. Network analysis also confirms their involvement in the network of already known disease genes. This approach, based on the study of functionally-related gene sets, requires of lower sample sizes and opens new opportunities for the study of rare diseases.
Collapse
Affiliation(s)
- Raquel Ma Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Q, Wang J, Li A, Liu H, Zhang W, Cui X, Wang K. Expression of neurexin and neuroligin in the enteric nervous system and their down-regulated expression levels in Hirschsprung disease. Mol Biol Rep 2012; 40:2969-75. [PMID: 23264101 DOI: 10.1007/s11033-012-2368-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023]
Abstract
To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol 2012; 382:365-74. [PMID: 23261929 DOI: 10.1016/j.ydbio.2012.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2012; 9:625-32. [PMID: 22890111 DOI: 10.1038/nrgastro.2012.138] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enteric glia are a unique class of peripheral glial cells within the gastrointestinal tract. Major populations of enteric glia are found in enteric ganglia in the myenteric and submucosal plexuses of the enteric nervous system (ENS); these cells are also found outside of the ENS, within the circular muscle and in the lamina propria of the mucosa. These different populations of cells probably represent unique classes of glial cells with differing functions. In the past few years, enteric glia have been found to be involved in almost every gut function including motility, mucosal secretion and host defence. Subepithelial glia seem to have a trophic and supporting relationship with intestinal epithelial cells, but the necessity of these roles in the maintenance of normal epithelial functions remains to be shown. Likewise, glia within enteric ganglia are activated by synaptic stimulation, suggesting an active role in synaptic transmission, but the precise role of glial activation in normal enteric network activity is unclear. Excitingly, enteric glia can also give rise to new neurons, but seemingly only under limited circumstances. In this Review, we discuss the current body of evidence supporting functional roles of enteric glia and identify key gaps in our understanding of the physiology of these unique cells.
Collapse
Affiliation(s)
- Brian D Gulbransen
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive North West Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
48
|
Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 2012; 15:1211-8. [PMID: 22902718 DOI: 10.1038/nn.3184] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/12/2012] [Indexed: 12/23/2022]
Abstract
Cell migration is fundamental to organogenesis. During development, the enteric neural crest cells (ENCCs) that give rise to the enteric nervous system (ENS) migrate and colonize the entire length of the gut, which undergoes substantial growth and morphological rearrangement. How ENCCs adapt to such changes during migration, however, is not fully understood. Using time-lapse imaging analyses of mouse ENCCs, we show that a population of ENCCs crosses from the midgut to the hindgut via the mesentery during a developmental time period in which these gut regions are transiently juxtaposed, and that such 'trans-mesenteric' ENCCs constitute a large part of the hindgut ENS. This migratory process requires GDNF signaling, and evidence suggests that impaired trans-mesenteric migration of ENCCs may underlie the pathogenesis of Hirschsprung disease (intestinal aganglionosis). The discovery of this trans-mesenteric ENCC population provides a basis for improving our understanding of ENS development and pathogenesis.
Collapse
|
49
|
McKeown SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: a developmental disorder of the enteric nervous system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:113-29. [PMID: 23799632 DOI: 10.1002/wdev.57] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hirschsprung disease (HSCR), which is also called congenital megacolon or intestinal aganglionosis, is characterized by an absence of enteric (intrinsic) neurons from variable lengths of the most distal bowel. Because enteric neurons are essential for propulsive intestinal motility, infants with HSCR suffer from severe constipation and have a distended abdomen. Currently the only treatment is surgical removal of the affected bowel. HSCR has an incidence of around 1:5,000 live births, with a 4:1 male:female gender bias. Most enteric neurons arise from neural crest cells that emigrate from the caudal hindbrain and then migrate caudally along the entire gut. The absence of enteric neurons from variable lengths of the bowel in HSCR results from a failure of neural crest-derived cells to colonize the affected gut regions. HSCR is therefore regarded as a neurocristopathy. HSCR is a multigenic disorder and has become a paradigm for understanding complex factorial disorders. The major HSCR susceptibility gene is RET. The penetrance of several mutations in HSCR susceptibility genes is sex-dependent. HSCR can occur as an isolated disorder or as part of syndromes; for example, Type IV Waardenburg syndrome is characterized by deafness and pigmentation defects as well as intestinal aganglionosis. Studies using animal models have shown that HSCR genes regulate multiple processes including survival, proliferation, differentiation, and migration. Research into HSCR and the development of enteric neurons is an excellent example of the cross fertilization of ideas that can occur between human molecular geneticists and researchers using animal models. WIREs Dev Biol 2013, 2:113-129. doi: 10.1002/wdev.57 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy & Cell Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | | | | | | |
Collapse
|
50
|
Barlow AJ, Dixon J, Dixon MJ, Trainor PA. Balancing neural crest cell intrinsic processes with those of the microenvironment in Tcof1 haploinsufficient mice enables complete enteric nervous system formation. Hum Mol Genet 2012; 21:1782-93. [PMID: 22228097 DOI: 10.1093/hmg/ddr611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The enteric nervous system (ENS) comprises a complex neuronal network that regulates peristalsis of the gut wall and secretions into the lumen. The ENS is formed from a multipotent progenitor cell population called the neural crest, which is derived from the neuroepithelium. Neural crest cells (NCCs) migrate over incredible distances to colonize the entire length of the gut and during their migration they must survive, proliferate and ultimately differentiate. The absence of an ENS from variable lengths of the colon results in Hirschsprung's disease (HSCR) or colonic aganglionosis. Mutations in about 12 different genes have been identified in HSCR patients but the complex pattern of inheritance and variable penetrance suggests that additional genes or modifiers must be involved in the etiology and pathogenesis of this disease. We discovered that Tcof1 haploinsufficiency in mice models many of the early features of HSCR. Neuroepithelial apoptosis diminished the size of the neural stem cell pool resulting in reduced NCC numbers and their delayed migration along the gut from E10.5 to E14.5. Surprisingly however, we observe continued and complete colonization of the entire colon throughout E14.5-E18.5, a period in which the gut is considered to be non- or less-permissive to NCC. Thus, we reveal for the first time that reduced NCC progenitor numbers and delayed migration do not unequivocally equate with a predisposition for the pathogenesis of HSCR. In fact, these deficiencies can be overcome by balancing NCC intrinsic processes of proliferation and differentiation with extrinsic influences of the gut microenvironment.
Collapse
Affiliation(s)
- Amanda J Barlow
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|