1
|
Falquetto B, Tuppy M, Potje SR, Moreira TS, Antoniali C, Takakura AC. Cardiovascular dysfunction associated with neurodegeneration in an experimental model of Parkinson's disease. Brain Res 2016; 1657:156-166. [PMID: 27956121 DOI: 10.1016/j.brainres.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
Abstract
Patients with Parkinson's disease (PD) exhibit both motor and non-motor symptoms. Among the non-motor symptoms, cardiovascular autonomic dysfunction is frequently observed. Here, we evaluated baroreflex function, vascular reactivity and neuroanatomical changes in brainstem regions involved in the neural control of circulation in the 6-hydroxydopamine (6-OHDA) model of PD. Male Wistar rats received a bilateral injection of 6-OHDA or vehicle into the striatum. After 61days, baroreflex function and vascular reactivity were assessed. The 6-OHDA and vehicle groups showed similar increases in mean arterial pressure (MAP) in response to phenylephrine (PE). However, the bradycardia observed in the vehicle group was blunted in the 6-OHDA-treated rats. Injection of sodium nitroprusside (SNP) decreased hypotension, tachycardia and vascular relaxation in 6-OHDA-treated rats. Bilateral intrastriatal 6-OHDA led to massive degeneration of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and to reductions in the numbers of A1/C1 and A5 catecholaminergic neurons while sparing A2 neurons within the nucleus of the solitary tract (NTS). 6-OHDA-treated rats also showed decreases in Phox2b-expressing neurons in the NTS and in choline acetyltransferase (ChAT) immunoreactivity in the nucleus ambiguus. Altogether, our data suggest that this model of PD includes neuroanatomical and functional changes that lead to cardiovascular impairment.
Collapse
Affiliation(s)
- Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Marina Tuppy
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Simone R Potje
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Cristina Antoniali
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP-Univ. Estadual Paulista, 16015-050 Araçatuba, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Kuntze LB, Ferreira-Junior NC, Lagatta DC, Resstel LBM. Ventral hippocampus modulates bradycardic response to peripheral chemoreflex activation in awake rats. Exp Physiol 2016; 101:482-93. [PMID: 26700468 DOI: 10.1113/ep085393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does reversible synaptic inactivation by CoCl2 in the dorsal (DH) or ventral (VH) portions of the hippocampus have a modulatory effect on cardiovascular and respiratory responses evoked by chemoreflex activation in awake rats? What is the main finding and its importance? Using i.v. infusion of KCN to activate the peripheral chemoreflex before and after microinjection of CoCl2 into VH, we showed that the bradycardic response was increased, but not the pressor and tachypnoeic responses even if the tidal volume had been increased. Thus, VH but not DH may be involved in the modulation of the parasympathoexcitatory component of the peripheral chemoreflex. In rats, peripheral chemoreflex activation evokes pressor and bradycardic responses as well as a tachypnoeic response. Studies have shown that limbic structures, such as the hippocampus, can modulate autonomic reflexes. Evidence suggests that the dorsal (DH) and the ventral (VH) portions of the hippocampus are structurally and functionally distinct; therefore, in the present study we tested the hypothesis that local neurotransmission of the DH and VH are involved in the neural pathways of the cardiovascular and ventilatory responses to chemoreflex activation. Thus, the goal of the present study was to compare the chemoreflex responses elicited by i.v. injection of KCN (40 μg per rat) in awake rats before and after DH and VH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the unspecific synapse blocker, CoCl2 (1 mm). Bilateral inhibition of VH, but not DH, 10 min before KCN infusion was able to enhance the bradycardic response (P < 0.05), with no changes in the typical pressor and tachypnoeic responses evoked by chemoreflex activation (P > 0.05). Furthermore, the tidal volume was significantly increased (P < 0.05) even though no other respiratory parameter had been significantly changed (P > 0.05), suggesting that VH can exert a tonic modulatory action on tidal volume. Therefore, the present study reports, for the first time, that DH neurotransmission did not exert an influence on chemoreflex responses, whereas VH mediates, at least in part, the parasympathoexcitatory component of the peripheral chemoreflex.
Collapse
Affiliation(s)
- Luciana Bärg Kuntze
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Nilson Carlos Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Davi Campos Lagatta
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14090-090, Brazil
| |
Collapse
|
3
|
Costa KM, Accorsi-Mendonça D, Moraes DJA, Machado BH. Evolution and physiology of neural oxygen sensing. Front Physiol 2014; 5:302. [PMID: 25161625 PMCID: PMC4129633 DOI: 10.3389/fphys.2014.00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/23/2014] [Indexed: 01/06/2023] Open
Abstract
Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context.
Collapse
Affiliation(s)
| | | | | | - Benedito H. Machado
- Laboratory of Autonomic and Respiratory Control, Department of Physiology, School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
4
|
Granjeiro ÉM, Marroni SS, Martins Dias DP, Heck Bonagamba LG, Costa KM, dos Santos JC, Oliveira JAC, Machado BH, Garcia-Cairasco N. Behavioral and cardiorespiratory responses to bilateral microinjections of oxytocin into the central nucleus of amygdala of Wistar rats, an experimental model of compulsion. PLoS One 2014; 9:e99284. [PMID: 25036025 PMCID: PMC4103777 DOI: 10.1371/journal.pone.0099284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022] Open
Abstract
Introduction The central nucleus of amygdala plays an important role mediating fear and anxiety responses. It is known that oxytocin microinjections into the central nucleus of amygdala induce hypergrooming, an experimental model of compulsive behavior. We evaluated the behavioral and cardiorespiratory responses of conscious rats microinjected with oxytocin into the central nucleus of amygdala. Methods Male Wistar rats were implanted with guide cannulae into the central nucleus of amygdala and microinjected with oxytocin (0.5 µg, 1 µg) or saline. After 24 h, rats had a catheter implanted into the femoral artery for pulsatile arterial pressure measurement. The pulsatile arterial pressure was recorded at baseline conditions and data used for cardiovascular variability and baroreflex sensitivity analysis. Respiratory and behavioral parameters were assessed during this data collection session. Results Microinjections of oxytocin (0.5 µg) into the central nucleus of amygdala produced hypergrooming behavior but did not change cardiorespiratory parameters. However, hypergrooming evoked by microinjections of oxytocin (1 µg) into the central nucleus of amygdala was accompanied by increase in arterial pressure, heart rate and ventilation and augmented the power of low and high (respiratory-related) frequency bands of the systolic arterial pressure spectrum. No changes were observed in power of the low and high frequency bands of the pulse interval spectrum. Baroreflex sensitivity was found lower after oxytocin microinjections, demonstrating that the oxytocin-induced pressor response may involve an inhibition of baroreflex pathways and a consequent facilitation of sympathetic outflow to the cardiovascular system. Conclusions The microinjection of oxytocin (1 µg) into the central nucleus of amygdala not only induces hypergrooming but also changes cardiorespiratory parameters. Moreover, specific oxytocin receptor antagonism attenuated hypergrooming but did not affect pressor, tachycardic and ventilatory responses to oxytocin, suggesting the involvement of distinct neural pathways.
Collapse
Affiliation(s)
- Érica Maria Granjeiro
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Simone Saldanha Marroni
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel Penteado Martins Dias
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leni Gomes Heck Bonagamba
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kauê Machado Costa
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jéssica Cristina dos Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antônio Cortes Oliveira
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H. Machado
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Santiago MB, Vieira AA, Giusti-Paiva A. Impaired chemoreflex sensitivity during septic shock induced by cecal ligation and perforation. Can J Physiol Pharmacol 2013; 91:1107-11. [PMID: 24289082 DOI: 10.1139/cjpp-2013-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we sought to determine the effects produced by cecal ligation and perforation (CLP) on the autonomic responses to the activation of peripheral chemoreflexes in conscious rats. The peripheral chemoreflex was activated with potassium cyanide (KCN; 40 μg·(0.1 mL)(-1); intravenous injection (i.v.)) in male Wistar rats 3, 6, 12, and 24 h after CLP or sham surgery. The mean arterial pressure (MAP), heart rate (HR), and respiratory frequency (fR) were recorded simultaneously. CLP surgery reduced the baseline MAP when compared with the sham animals. In the animals of the sham group, the autonomic responses to KCN produced increases in MAP and fR as well as a decrease in HR. However, 12 and 24 h after CLP surgery, the autonomic responses to KCN were attenuated. The restoration of MAP by i.v. injected l-NAME or phenylephrine did not restore the autonomic response to KCN in rats subjected to CLP. These data show that septic shock induced by CLP compromised the autonomic responses to peripheral chemoreflex activation in conscious rats, suggesting that an important regulatory mechanism is impaired during the course of this condition.
Collapse
Affiliation(s)
- Michael B Santiago
- Department of Physiological Science, Institute of Biomedical Sciences of Federal University of Alfenas (Unifal-MG), Alfenas 37130-000, Minas Gerais, Brazil
| | | | | |
Collapse
|
6
|
Granjeiro ÉM, Gomes FV, Alves FH, Crestani CC, Corrêa FM, Resstel LB. Bed nucleus of the stria terminalis and the cardiovascular responses to chemoreflex activation. Auton Neurosci 2012; 167:21-6. [DOI: 10.1016/j.autneu.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/20/2011] [Accepted: 11/25/2011] [Indexed: 01/06/2023]
|
7
|
Granjeiro EM, Gomes FV, Guimarães FS, Corrêa FMA, Resstel LBM. Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress. Pharmacol Biochem Behav 2011; 99:743-8. [PMID: 21771609 DOI: 10.1016/j.pbb.2011.06.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Systemic administration of cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, attenuates the cardiovascular and behavioral responses to restraint stress. Although the brain structures related to CBD effects are not entirely known, they could involve brainstem structures responsible for cardiovascular control. Therefore, to investigate this possibility the present study verified the effects of CBD (15, 30 and 60 nmol) injected into the cisterna magna on the autonomic and behavioral changes induced by acute restraint stress. During exposure to restraint stress (1h) there was a significant increase in mean arterial pressure (MAP) and heart rate (HR). Also, 24h later the animals showed a decreased percentage of entries onto the open arms of the elevated plus-maze. These effects were attenuated by CBD (30 nmol). The drug had no effect on MAP and HR baseline values. These results indicate that intracisternal administration of CBD can attenuate autonomic responses to stress. However, since CBD decreased the anxiogenic consequences of restraint stress, it is possible that the drug is also acting on forebrain structures.
Collapse
Affiliation(s)
- Erica M Granjeiro
- Department of Physiology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | | | | | |
Collapse
|
8
|
Granjeiro ÉM, Scopinho AA, Corrêa FMA, Resstel LBM. Prelimbic but not infralimbic cortex is involved in the pressor response to chemoreflex activation in awake rats. Exp Physiol 2011; 96:518-27. [DOI: 10.1113/expphysiol.2011.057596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|