Ghorbani ML, Nyborg NCB, Fjalland B, Sheykhzade M. Calcium activity of upper thoracic dorsal root ganglion neurons in zucker diabetic Fatty rats.
Int J Endocrinol 2013;
2013:532850. [PMID:
23662103 PMCID:
PMC3639628 DOI:
10.1155/2013/532850]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to examine the calcium activity of C8-T5 dorsal root ganglion (DRG) neurons from Zucker diabetic fatty rats. In total, 8 diabetic ZDF fatty animals and 8 age-matched control ZDF lean rats were employed in the study. C8-T5 dorsal root ganglia were isolated bilaterally from 14 to 18 weeks old rats, and a primary culture was prepared. Calcium activity was measured ratiometrically using the fluorescent Ca(2+)-indicator Fura-2 acetoxymethyl ester. All neurons were stimulated twice with 20 mM K(+), followed by stimulation with either 0.3 or 0.5 μ M Capsaicin, alone or in combination with algogenic chemicals (bradykinin, serotonin, prostaglandin E2 (all 10(-5) M), and adenosine (10(-3) M)) at pH 7.4 and 6.0. Neurons from diabetic animals exhibited an overall increased response to stimulation with 20 mM K(+) compared to neurons from control. Stimulation with Capsaicin alone caused an augmented response in neurons from diabetic animals compared to control animals. When stimulated with a combination of Capsaicin and algogenic chemicals, no differences between the two groups of neurons were measured, neither at pH 7.4 nor 6.0. In conclusion, diabetes-induced alterations in calcium activity of the DRG neurons were found, potentially indicating altered neuronal responses during myocardial ischemia.
Collapse