1
|
Modulation of sympathetic preganglionic neuron activity via adrenergic receptors. Hypertens Res 2018; 41:499-505. [PMID: 29748580 DOI: 10.1038/s41440-018-0049-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022]
Abstract
The sympathetic preganglionic neurons (SPNs) play a key role in the sympathetic nervous system. Previous reports have suggested that norepinephrine (NE) directly affects SPNs via both inhibitory hyperpolarization interactions mediated by α2 receptors and excitatory depolarization interactions mediated by α1 receptors. It remains poorly understood, however, whether the excitability of SPNs can be inhibited indirectly (presynaptically) as well as directly (postsynaptically). We intracellularly recorded 41 SPNs using the whole-cell patch-clamp technique in spinal cord slice preparations of neonatal rats. We examined the effects of NE or dexmedetomidine hydrochloride (Dxm) (α2-adrenergic receptor agonist) on SPNs by analyzing the excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs). EPSPs were dominant in 15 SPNs (EPSP-SPNs) and IPSPs were dominant in 7 SPNs (IPSP-SPNs) at baseline. We were unable to analyze the postsynaptic potentials in the other 19 SPNs, due to high frequency of action potential firings (firing-SPNs). At baseline, the membrane potentials and resistances of each type of SPN were similar. NE (1 μM) gradually depolarized the EPSP-SPNs and IPSP-SPNs (P < 0.001) and NE significantly increased the EPSP frequency of the EPSP-SPNs (P < 0.05). Dxm (10 nM) after application of NE decreased the EPSP frequency of the EPSP-SPNs (P < 0.001) and the EPSP voltage and IPSP voltage of the IPSP-SPNs (P < 0.05). In 5 of the 19 firing-SPNs, NE induced membrane hyperpolarization (P < 0.05) and completely inhibited firings. Dxm had no effect in these neurons. The SPNs received inhibitory modulation through α2-adrenergic receptors. Some SPNs can be directly inhibited via effects independent of the α2 receptors.
Collapse
|
2
|
Oyama Y, Iigaya K, Minoura Y, Okabe T, Izumizaki M, Onimaru H. An in vitro experimental model for analysis of central control of sympathetic nerve activity. J Physiol Sci 2017; 67:629-635. [PMID: 28601952 PMCID: PMC10717256 DOI: 10.1007/s12576-017-0549-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Newborn rat brainstem-spinal cord preparations are useful for in vitro analysis of various brainstem functions including respiratory activity. When studying the central control of sympathetic nerve activity (SNA), it is important to record peripheral outputs of the SNA. We developed an in vitro preparation in which neuronal connections between the cardiovascular center in the medulla and SNA peripheral outputs are preserved. Zero- to 1-day-old rats were deeply anesthetized with isoflurane, and the brainstem and spinal cord were isolated with a partial right thoracic cage to record sympathetic nerve discharge from the right thoracic sympathetic nerve trunk (T9-T11). SNA in this preparation was strongly modulated by inspiratory activity. Single-shot electrical stimulation of the ipsilateral rostral ventrolateral medulla (RVLM) induced a transient increase of SNA. Bath application of angiotensin II induced an increase of SNA, and local ipsilateral microinjection of angiotensin II to the RVLM induced a transient increase of SNA. This preparation allows analysis of the central control of the SNA in vitro.
Collapse
Affiliation(s)
- Yuji Oyama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Cardiology and Cardiac Catheterization Laboratories, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-Chuo, Tsuzuki, Yokohama, Kanagawa, 224-8503, Japan
| | - Kamon Iigaya
- Department of Internal Medicine, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka, Kanagawa, 254-0065, Japan
| | - Yoshino Minoura
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toshitaka Okabe
- Division of Cardiology and Cardiac Catheterization Laboratories, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-Chuo, Tsuzuki, Yokohama, Kanagawa, 224-8503, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|