1
|
Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhães-Cardoso MT, Calejo I, Silva-Ramos M, Correia-de-Sá P. Inhibition of cholinergic neurotransmission by β 3-adrenoceptors depends on adenosine release and A 1-receptor activation in human and rat urinary bladders. Am J Physiol Renal Physiol 2017; 313:F388-F403. [PMID: 28446460 DOI: 10.1152/ajprenal.00392.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The direct detrusor relaxant effect of β3-adrenoceptor agonists as a primary mechanism to improve overactive bladder symptoms has been questioned. Among other targets, activation of β3-adrenoceptors downmodulate nerve-evoked acetylcholine (ACh) release, but there is insufficient evidence for the presence of these receptors on bladder cholinergic nerve terminals. Our hypothesis is that adenosine formed from the catabolism of cyclic AMP in the detrusor may act as a retrograde messenger via prejunctional A1 receptors to explain inhibition of cholinergic activity by β3-adrenoceptors. Isoprenaline (1 µM) decreased [3H]ACh release from stimulated (10 Hz, 200 pulses) human (-47 ± 5%) and rat (-38 ± 1%) detrusor strips. Mirabegron (0.1 µM, -53 ± 8%) and CL316,243 (1 µM, -37 ± 7%) mimicked isoprenaline (1 µM) inhibition, and their effects were prevented by blocking β3-adrenoceptors with L748,337 (30 nM) and SR59230A (100 nM), respectively, in human and rat detrusor. Mirabegron and isoprenaline increased extracellular adenosine in the detrusor. Blockage of A1 receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or the equilibrative nucleoside transporters (ENT) with dipyridamole (0.5 µM) prevented mirabegron and isoprenaline inhibitory effects. Dipyridamole prevented isoprenaline-induced adenosine outflow from the rat detrusor, and this effect was mimicked by the ENT1 inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI, 30 µM). Cystometry recordings in anesthetized rats demonstrated that SR59230A, DPCPX, dipyridamole, and NBTI reversed the decrease in the voiding frequency caused by isoprenaline (0.1-1,000 nM). Data suggest that inhibition of cholinergic neurotransmission by β3-adrenoceptors results from adenosine release via equilibrative nucleoside transporters and prejunctional A1-receptor stimulation in human and rat urinary bladder.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Ana Filipa Costa
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Sílvia Moreira
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Isabel Calejo
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Universidade do Porto, Porto, Portugal; .,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; and
| |
Collapse
|
2
|
Persyn S, Eastham J, De Wachter S, Gillespie J. Adrenergic signaling elements in the bladder wall of the adult rat. Auton Neurosci 2016; 201:40-48. [PMID: 27659399 DOI: 10.1016/j.autneu.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/25/2023]
Abstract
A growing body of work is describing the absence of a significant sympathetic innervation of the detrusor implying little sympathetic regulation of bladder contractility. However, low doses of adrenergic agonists are capable of relaxing the bladder smooth muscle. If these effects underpin a physiological response then the cellular nature and operation of this system are currently unknown. The present immunohistochemistry study was done to explore the existence of alternative adrenergic signaling elements in the rat bladder wall. Using antibodies to tyrosine hydroxylase (TH) and vesicular mono-amine transporter (vmat), few adrenergic nerves were found in the detrusor although TH immunoreactive (IR) nerves were apparent in the bladder neck. TH-IR and vmat-IR nerves were however abundant surrounding blood vessels. A population of vmat-IR cells was found within the network of interstitial cells that surround the detrusor muscle bundles. These vmat-IR cells were not or only weakly TH-IR. This suggests that these interstitial cells have the capacity to store and release catecholamines that may involve noradrenaline. Cells expressing the β1-adrenoceptor (β1AR-IR) were also detected within the interstitial cell network. Double staining with antibodies to β1AR and vmat suggests that the majority of vmat-IR interstitial cells show β1AR-IR indicative of an autocrine signaling system. In conclusion, a population of interstitial cells has the machinery to store, release and respond to catecholamines. Thus, there might exist a non-neuronal β-adrenergic system operating in the bladder wall possibly linked to one component of motor activity, micro-contractions, a system that may be involved in mechanisms underpinning bladder sensation.
Collapse
Affiliation(s)
- Sara Persyn
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| | - Jane Eastham
- Uro-physiology Research Group, The Dental and Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, England.
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| | - James Gillespie
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| |
Collapse
|