1
|
Yang Y, Wang J, Zhang C, Guo Y, Zhao M, Zhang M, Li Z, Gao F, Luo Y, Wang Y, Cao J, Du M, Wang Y, Lin X, Xu Z. The efficacy and neural mechanism of acupuncture therapy in the treatment of visceral hypersensitivity in irritable bowel syndrome. Front Neurosci 2023; 17:1251470. [PMID: 37732301 PMCID: PMC10507180 DOI: 10.3389/fnins.2023.1251470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.
Collapse
Affiliation(s)
- Yuanzhen Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoyang Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Meidan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feifei Gao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Luo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiru Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyi Cao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingfang Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhe Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|