1
|
Menditti D, Santagata M, Guida D, Magliulo R, D'Antonio GM, Staglianò S, Boschetti CE. State of the Art in the Diagnosis and Assessment of Oral Malignant and Potentially Malignant Disorders: Present Insights and Future Outlook-An Overview. Bioengineering (Basel) 2024; 11:228. [PMID: 38534502 DOI: 10.3390/bioengineering11030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Oral Potentially Malignant Disorder (OPMD) is a significant concern for clinicians due to the risk of malignant transformation. Oral Squamous Cell Carcinoma (OSCC) is a common type of cancer with a low survival rate, causing over 200,000 new cases globally each year. Despite advancements in diagnosis and treatment, the five-year survival rate for OSCC patients remains under 50%. Early diagnosis can greatly improve the chances of survival. Therefore, understanding the development and transformation of OSCC and developing new diagnostic methods is crucial. The field of oral medicine has been advanced by technological and molecular innovations, leading to the integration of new medical technologies into dental practice. This study aims to outline the potential role of non-invasive imaging techniques and molecular signatures for the early detection of Oral Malignant and Potentially Malignant Disorders.
Collapse
Affiliation(s)
- Dardo Menditti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Santagata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - David Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Magliulo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giovanni Maria D'Antonio
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90128 Palermo, Italy
| | - Samuel Staglianò
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Ciro Emiliano Boschetti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
2
|
Lucchese A, Di Stasio D, De Stefano S, Nardone M, Carinci F. Beyond the Gut: A Systematic Review of Oral Manifestations in Celiac Disease. J Clin Med 2023; 12:3874. [PMID: 37373569 DOI: 10.3390/jcm12123874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is a chronic immune-mediated gluten-sensitive enteropathy, affecting about 1% of the population. The most common symptoms include diarrhea, abdominal pain, weight loss, and malabsorption. Extra-intestinal symptoms include oral manifestations. This systematic review aims to catalog and characterize oral manifestations in patients with CD. METHODS a systematic literature review among different search engines using PICOS criteria has been performed. The studies included used the following criteria: tissues and anatomical structures of the oral cavity in humans, published in English and available in full text. Review articles and papers published before 1990 were excluded. RESULTS 209 articles were identified in the initial search. In the end, 33 articles met the selection criteria. The information extracted from the articles was classified based on the type of oral manifestation. Recurrent aphthous stomatitis (34.6%), atrophic glossitis and geographic tongue (15.26%), enamel defects (42.47%), delayed dental eruption (47.34%), xerostomia (38.05%), glossodynia (14.38%), and other manifestations including cheilitis, fissured tongue, periodontal diseases, and oral lichen planus were found in the celiac subjects of the studies analyzed. The quality of articles on the topic should be improved; however, oral manifestations in CD patients are widely described in the literature and could help diagnose celiac disease.
Collapse
Affiliation(s)
- Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Dario Di Stasio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Michele Nardone
- Asst Melegnano Martesana, Regione Lombardia, Adda District, 20077 Vizzolo Predabissi, Italy
| | - Francesco Carinci
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Kanduc D. Epigenetics of Hypogonadotropic Hypogonadism: Molecular Mimicry between Severe Acute Respiratory Syndrome Coronavirus 2 and KISSR. Glob Med Genet 2023; 10:129-132. [PMID: 37360005 PMCID: PMC10289852 DOI: 10.1055/s-0043-1770767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
This study analyzed KISS1 and its receptor KISSR for peptide sharing with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was found that SARS-CoV-2 shares numerous minimal immune pentapeptide determinants with KISSR only. The peptide sharing has a high immunologic potential since almost all the common peptides are present in 101 SARS-CoV-2-derived immunoreactive epitopes. Data are in favor of configuring molecular mimicry as an epigenetic factor that can alter KISSR thus causing the hypogonadotropic hypogonadism syndrome with which altered KISSR associates.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Correlation between Oral Lichen Planus and Viral Infections Other Than HCV: A Systematic Review. J Clin Med 2022; 11:jcm11185487. [PMID: 36143134 PMCID: PMC9501453 DOI: 10.3390/jcm11185487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This review aimed to evaluate the correlation between viral infections (HPV, EBV, HSV-1, CMV) other than HCV and oral lichen planus to assess if there is sufficient evidence to establish if these viruses can play a role in the etiopathogenesis of the disease. MATERIALS AND METHODS We reviewed the literature using different search engines (PubMed, ISI Web of Science, and the Cochrane Library), employing MeSH terms such as "oral lichen planus" and "OLP" in conjunction with other terms. We utilized the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) method to define our study eligibility criteria. RESULTS A total of 43 articles of the 1219 results initially screened were included in the study. We allocated the 43 selected items into four groups, according to each related virus: HPV, EBV, HSV-1, and CMV. CONCLUSIONS Heterogeneous results neither confirm nor exclude a direct correlation between the investigated viral infections and oral lichen planus etiopathogenesis and its feasible malignant transformation. Many viral agents can cause oral lesions and act as cancerizing agents. Future studies could be desirable to produce comparable statistical analyses and enhance the quantity and quality of the outcomes to promote the translation of research into clinical practice.
Collapse
|
5
|
Kanduc D. SARS-CoV-2: The Self-Nonself Issue and Diagnostic Tests. J Lab Physicians 2022; 15:56-61. [PMID: 37064977 PMCID: PMC10104719 DOI: 10.1055/s-0042-1750078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Abstract
Objective At present, false negatives/positives have been reported in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. Searching for the molecular basis of such tests' unreliability, this study aimed at defining how specific are the sequences used in serological and polymerase chain reaction (PCR) tests to detect SARS-CoV-2.
Materials and Methods Analyses were performed on the leading SARS-CoV-2 biomarker spike glycoprotein (gp). Sharing of peptide sequences between the spike antigen and the human host was analyzed using the Peptide Search program from Uniprot database. Sharing of oligonucleotide sequences was investigated using the nucleotide Basic Local Alignment Search Tool (BLASTn) from National Center for Biotechnology Information (NCBI).
Results Two main points stand out: (1) a massive pentapeptide sharing exists between the spike gp and the human proteome, and only a limited number of pentapeptides (namely 107) identify SARS-CoV-2 spike gp as nonself when compared with the human proteome, and (2) the small phenetic difference practically disappears at the genetic level. Indeed, almost all of the 107 pentadecameric nucleotide sequences coding for the pentapeptides unique to SARS-CoV-2 spike gp are present in human nucleic acids too.
Conclusions The data are of immunological significance for defining the issue of the viral versus human specificity and likely explain the fact that false positives can occur in serological and PCR tests for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
6
|
Designing of a Recombinant Multi-Epitopes Based Vaccine against Enterococcus mundtii Using Bioinformatics and Immunoinformatics Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063729. [PMID: 35329417 PMCID: PMC8949936 DOI: 10.3390/ijerph19063729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Enterococcus species are an emerging group of bacterial pathogens that have a significant role in hospital-associated infections and are associated with higher mortality and morbidity rates. Among these pathogens, Enterococcus mundtii is one of the causative agents of multiple hospital associated infections. Currently, no commercially available licensed vaccine is present, and multi-drug resistant strains of the pathogen are prominent. Due to several limitations of experimental vaccinology, computational vaccine designing proved to be helpful in vaccine designing against several bacterial pathogens. Herein, we designed a multi-epitope-based vaccine against E. mundtii using in silico approaches. After an in-depth analysis of the core genome, three probable antigenic proteins (lytic polysaccharide monooxygenase, siderophore ABC transporter substrate-binding protein, and lytic polysaccharide monooxygenase) were shortlisted for epitope prediction. Among predicted epitopes, ten epitopes-GPADGRIAS, TTINHGGAQA, SERTALSVTT, GDGGNGGGEV, GIKEPDLEK, KQADDRIEA, QAIGGDTSN, EPLDEQTASR, AQWEPQSIEA, QPLKFSDFEL-were selected for multi-epitope vaccine construct designing. The screened B- and T-cell epitopes were joined with each other via specific linkers and linked to the cholera toxin B subunit as an adjuvant to enhance vaccine immune protection efficacy. The designed vaccine construct induced cellular and humoral immune responses. Blind docking with immune cell receptors, followed by molecular dynamic simulation results confirms the good binding potency and stability of the vaccine in providing protection against the pathogen.
Collapse
|
7
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
8
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
9
|
Segal Y, Dahan S, Calabrò M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res 2017; 65:564-571. [DOI: 10.1007/s12026-016-8890-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Lucchese G, Kanduc D. Zika virus and autoimmunity: From microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev 2016; 15:801-8. [DOI: 10.1016/j.autrev.2016.03.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
|
11
|
Kanduc D, Fasano C, Bavaro SL, Novello G, Lucchese G, Capone G. Peptide profiling of the route from Mahoney to Sabin, and return. J Basic Microbiol 2014; 54:369-77. [DOI: 10.1002/jobm.201200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/07/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Simona Lucia Bavaro
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giuseppe Novello
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Guglielmo Lucchese
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences; University of Bari; Bari Italy
| |
Collapse
|
12
|
Capone G, Calabrò M, Lucchese G, Fasano C, Girardi B, Polimeno L, Kanduc D. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis 2013; 69:205-12. [DOI: 10.1111/2049-632x.12066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Giovanni Capone
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Michele Calabrò
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Guglielmo Lucchese
- Brain and Language Laboratory; Cluster of Excellence “Languages of Emotions”; Free University of Berlin; Berlin Germany
| | - Candida Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Bruna Girardi
- Section of Gastroenterology; Department of Emergency and Organ Transplantation (DETO); University of Bari; Bari Italy
| | - Lorenzo Polimeno
- Section of Gastroenterology; Department of Emergency and Organ Transplantation (DETO); University of Bari; Bari Italy
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| |
Collapse
|
13
|
Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18:487-94. [PMID: 22696298 DOI: 10.1002/psc.2419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/03/2023]
Abstract
The tendency to use the terms homology, similarity, and identity interchangeably persists in comparative biology. When translated to immunology, overlapping the concepts of homology, similarity, and identity complicates the exact definition of the self-nonself dichotomy and, in particular, affects immunopeptidomics, an emerging field aimed at cataloging and distinguishing immunoreactive peptide epitopes from silent nonreactive amino acid sequences. The definition of similar/dissimilar peptides in immunology is discussed with special attention to the analysis of immunological (dis)similarity between two or more protein sequences that equates to measuring sequence similarity with the use of a proper measurement unit such as a length determinant.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| |
Collapse
|
14
|
Sundaramurthi JC, Brindha S, Shobitha SR, Swathi A, Ramanandan P, Hanna LE. In silico identification of potential antigenic proteins and promiscuous CTL epitopes in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2012; 12:1312-8. [PMID: 22484107 DOI: 10.1016/j.meegid.2012.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/11/2023]
Abstract
Cell-mediated immunity is critical for the control of Mycobacterium tuberculosis infection. We hypothesized that those proteins of M. tuberculosis (MTB) that do not have homologs in humans as well as human gut flora, would mount a good antigenic response in man, and employed a bioinformatics approach to identify MTB antigens capable of inducing a robust cell-mediated immune response in humans. In the first step we identified 624 MTB proteins that had no homologs in humans. Comparison of this set of proteins with the proteome of 77 different microbes that comprise the human gut flora narrowed down the list to 180 proteins unique to MTB. Twenty nine of the 180 proteins are known to be associated with dormancy. Since dormancy associated proteins are known to harbor CTL epitopes, we selected four representative unique proteins and subjected them to epitope analysis using ProPred1. Nineteen novel promiscuous epitopes were identified in the four proteins. Population coverage for 7 of the 19 shortlisted epitopes including Rv3852 (58-KPAEAPVSL, 112-VPLIVAVTL, 118-VTLSLLALL and 123-LALLLIRQL), Rv2706c (66-RPLSGVSFL) Rv3466 (8- RIVEVFDAL and 38-RSLERLECL) was >74%. These novel promiscuous epitopes are conserved in other virulent MTB strains, and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.
Collapse
Affiliation(s)
- Jagadish Chandrabose Sundaramurthi
- ICMR-Biomedical Informatics Centre, Department of Clinical Research, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre), Indian Council of Medical Research, Chennai 600 031, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
15
|
Lucchese G, Pesce Delfino A. Developing an anti-Campylobacter jejunivaccine. Immunopharmacol Immunotoxicol 2012; 34:385-90. [DOI: 10.3109/08923973.2011.608685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Capone G, Novello G, Bavaro SL, Fasano C, Pesce Delfino A, Polito AN, Kanduc D. A qualitative description of the peptide sharing between poliovirus and Homo sapiens. Immunopharmacol Immunotoxicol 2012; 34:779-85. [PMID: 22303874 DOI: 10.3109/08923973.2012.654610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a companion paper, we reported that pentapeptides from human poliovirus 1, Mahoney strain, occur repeatedly in human proteins for a total of more than 18,000 overlaps. In the present study, we describe the distribution of the polio pentapeptides throughout biochemical pathways and networks characterizing functions and tissues in the human host. The present study might be of help to better define the poliovirus-host relationships as well as for designing peptide modules with anti-polio activity.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biochemistry and Molecular Biology, Universityof Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
18
|
Lucchese G, Stufano A, Kanduc D. Searching for an effective, safe and universal anti-HIV vaccine: Finding the answer in just one short peptide. SELF/NONSELF 2011; 2:49-54. [PMID: 21776335 PMCID: PMC3136904 DOI: 10.4161/self.2.1.14762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 01/17/2023]
Abstract
We explore the pentapeptide overlapping between human immunodeficiency virus (HIV) proteins and the human proteome. Our intent was to define viral peptides to be used in vaccines effective against different HIV strains, vaccines that are able to overcome the difficulties posed by the tendency of HIV to mutate, and that are also exempt from harmful collateral cross-reactions, as well as being repeatedly administrable to the global population. Analysis of HIV-1 envelope glycoprotein 160 (Env gp160) sequences revealed a set of 15 pentapeptides highly conserved among a number of retroviral sequences, and absent in the human proteome, thus representing unique molecular retroviral signatures. Use of these short viral peptide modules may represent the first concrete step toward the goal of a universal, safe and effective anti-HIV vaccine.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| | | | | |
Collapse
|
19
|
Ramakrishnan K, Flower DR. Discriminating antigen and non-antigen using proteome dissimilarity II: viral and fungal antigens. Bioinformation 2010; 5:35-8. [PMID: 21346877 PMCID: PMC3040003 DOI: 10.6026/97320630005035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/27/2010] [Indexed: 11/23/2022] Open
Abstract
Immunogenicity arises via many synergistic mechanisms, yet the overall dissimilarity of pathogenic proteins versus the host proteome has been proposed
as a key arbiter. We have previously explored this concept in relation to Bacterial antigens; here we extend our analysis to antigens of viral and fungal
origin. Sets of known viral and fungal antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. Both antigenic and
non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The
statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we could not determine a threshold
able meaningfully to separate non-antigen from antigen. We conclude that viral and fungal antigens cannot be predicted from pathogen genomes based
solely on their dissimilarity to mammalian genomes.
Collapse
Affiliation(s)
- Kamna Ramakrishnan
- The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire, United Kingdom; RG20 7NN Medical Genetics Section, University of
Edinburgh, Edinburgh, United Kingdom EH4 2XU
| | - Darren R Flower
- Aston University, Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United
Kingdom, B5 7ET
- Darren R. Flower: phone: +44 (0)121 204 5182
| |
Collapse
|
20
|
Ramakrishnan K, Flower DR. Discriminating antigen and non-antigen using proteome dissimilarity III: tumour and parasite antigens. Bioinformation 2010; 5:39-42. [PMID: 21346878 PMCID: PMC3040004 DOI: 10.6026/97320630005039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/09/2010] [Indexed: 11/23/2022] Open
Abstract
Computational genome analysis enables systematic identification of potential immunogenic proteins within a pathogen. Immunogenicity is a system property that arises through the interaction of host and pathogen as mediated through the medium of a immunogenic protein. The overt dissimilarity of pathogenic proteins when compared to the host proteome is conjectured by some to be the determining principal of immunogenicity. Previously, we explored this idea in the context of Bacterial, Viral, and Fungal antigen. In this paper, we broaden and extend our analysis to include complex antigens of eukaryotic origin, arising from tumours and from parasite pathogens. For both types of antigen, known antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. In contrast to our previous results, both visual inspection and statistical evaluation indicate a much wider range of homologues and a significant level of discrimination; but, as before, we could not determine a viable threshold capable of properly separating non-antigen from antigen. In concert with our previous work, we conclude that global proteome dissimilarity is not a useful metric for immunogenicity for presently available antigens arising from Bacteria, viruses, fungi, parasites, and tumours. While we see some signal for certain antigen types, using dissimilarity is not a useful approach to identifying antigenic molecules within pathogen genomes.
Collapse
Affiliation(s)
- Kamna Ramakrishnan
- The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire, United Kingdom; RG20 7NN Medical Genetics Section, University of
Edinburgh, Edinburgh, United Kingdom EH4 2XU
| | - Darren R Flower
- Aston University, Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United
Kingdom, B5 7ET
- Darren R. Flower: phone: ‐44 (0)121 204 5182; * Corresponding author
| |
Collapse
|
21
|
Ramakrishnan K, Flower DR. Discriminating antigen and non-antigen using proteome dissimilarity: bacterial antigens. Bioinformation 2010; 4:445-7. [PMID: 20975907 PMCID: PMC2951699 DOI: 10.6026/97320630004447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/14/2010] [Indexed: 11/23/2022] Open
Abstract
It has been postulated that immunogenicity results from the overall dissimilarity of pathogenic proteins versus the host proteome. We have
sought to use this concept to discriminate between antigens and non-antigens of bacterial origin. Sets of 100 known antigenic and nonantigenic
peptide sequences from bacteria were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences
lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical
null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we were unable to determine a
threshold able to separate meaningfully antigen from non-antigen. Thus, antigens cannot be predicted from pathogen genomes based solely
on their dissimilarity to the human genome.
Collapse
Affiliation(s)
- Kamna Ramakrishnan
- The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire, United Kingdom, RG20 7NN; Medical Genetics Section,University of Edinburgh, Edinburgh, United Kingdom. EH4 2XU
| | | |
Collapse
|
22
|
Stufano A, Capone G, Pesetti B, Polimeno L, Kanduc D. Clustering of rare peptide segments in the HCV immunome. SELF/NONSELF 2010; 1:154-162. [PMID: 21487517 PMCID: PMC3065674 DOI: 10.4161/self.1.2.11391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 01/01/2023]
Abstract
Our previous research and a comprehensive meta-analysis of data from the literature on epitope mapping has revealed that the B cell epitope repertoire is allocated to rare peptide motifs, i.e., antigenic peptide sequences endowed with a low level of similarity to the host proteome. From a clinical point of view, low-similarity peptides able to evoke an immune response appear to be of special interest for the rational design of vaccines for poorly treatable diseases such as hepatitis-C virus (HCV) infection. Indeed, low similarity peptides would guarantee the highest specificity and lowest cross-reactivity, i.e., effectiveness without adverse side-effects. In this study, aimed at gaining further information for the development of effective anti-HCV peptide-based vaccines, the HCV epitopes recognized by human antibodies and currently catalogued in the Immune Epitope Data Base (IEDB) were examined for pentamer sequence similarities to the human proteome. We report that the analyzed HCV determinants are characterized by the presence of fragment absent from (or scarcely represented in) human proteins. These data confirm the low-similarity hypothesis, according to which a low-similarity to the host proteome defines the nonself character of microbial antigens and modulates peptide immunogenicity. Moreover, this study indicates a concrete and safe immunotherapeutic approach which might be used in a universal anti-HCV vaccine.
Collapse
Affiliation(s)
- Angela Stufano
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| | | | | | | | | |
Collapse
|
23
|
Abstract
It can be argued that the arrival of the “genomics era” has significantly shifted the paradigm of vaccine and therapeutics development from microbiological to sequence-based approaches. Genome sequences provide a previously unattainable route to investigate the mechanisms that underpin pathogenesis. Genomics, transcriptomics, metabolomics, structural genomics, proteomics, and immunomics are being exploited to perfect the identification of targets, to design new vaccines and drugs, and to predict their effects in patients. Furthermore, human genomics and related studies are providing insights into aspects of host biology that are important in infectious disease. This ever-growing body of genomic data and new genome-based approaches will play a critical role in the future to enable timely development of vaccines and therapeutics to control emerging infectious diseases.
Collapse
|
24
|
Trost B, Kanduc D, Kusalik A. Rare peptide segments are found significantly more often in proto-oncoproteins than control proteins: implications for immunology and oncology. J R Soc Interface 2009; 6:123-7. [PMID: 18948250 DOI: 10.1098/rsif.2008.0320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is some evidence to suggest that peptide segments that are found rarely or never in the host proteome play a role in the immune response to disease-related proteins, both those derived from microbes and those derived from the host itself. We conjecture that this pattern may extend to human proto-oncoproteins. Our hypothesis in this study is that the frequency of rare peptide segments in sets of human proto-oncoproteins is significantly higher than in sets of control proteins, and we show that this is the case. Possible immunological implications of this observation are discussed.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon S7N 5C9, Canada.
| | | | | |
Collapse
|
25
|
Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther 2008; 9:45-53. [DOI: 10.1517/14712590802614041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Kanduc D, Stufano A, Lucchese G, Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides 2008; 29:1755-66. [PMID: 18582510 PMCID: PMC7115663 DOI: 10.1016/j.peptides.2008.05.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 11/10/2022]
Abstract
Thirty viral proteomes were examined for amino acid sequence similarity to the human proteome, and, in parallel, a control of 30 sets of human proteins was analyzed for internal human overlapping. We find that all of the analyzed 30 viral proteomes, independently of their structural or pathogenic characteristics, present a high number of pentapeptide overlaps to the human proteome. Among the examined viruses, human T-lymphotropic virus 1, Rubella virus, and hepatitis C virus present the highest number of viral overlaps to the human proteome. The widespread and ample distribution of viral amino acid sequences through the human proteome indicates that viral and human proteins are formed of common peptide backbone units and suggests a fluid compositional chimerism in phylogenetic entities canonically classified distantly as viruses and Homo sapiens. Importantly, the massive viral to human peptide overlapping calls into question the possibility of a direct causal association between virus-host sharing of amino acid sequences and incitement to autoimmune reactions through molecular recognition of common motifs.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology, University of Bari, Bari 70126, Italy.
| | | | | | | |
Collapse
|
27
|
|
28
|
Foreword. Ann N Y Acad Sci 2007; 1110:xv-xvii, 1-708. [PMID: 17911413 DOI: 10.1196/annals.1423.000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|