1
|
Dieudonné Y, Lorenzetti R, Rottura J, Janowska I, Frenger Q, Jacquel L, Vollmer O, Carbone F, Chengsong Z, Luka M, Depauw S, Wadier N, Giorgiutti S, Nespola B, Herb A, Voll RE, Guffroy A, Poindron V, Ménager M, Martin T, Soulas-Sprauel P, Rizzi M, Korganow AS, Gies V. Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in Primary Antiphospholipid Syndrome. Nat Commun 2024; 15:9921. [PMID: 39548093 PMCID: PMC11568317 DOI: 10.1038/s41467-024-54228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a life-threatening clotting disorder mediated by pathogenic autoantibodies. Here we dissect the origin of self-reactive B cells in human PAPS using peripheral blood and bone marrow of patients with triple-positive PAPS via combined single-cell RNA sequencing, B cell receptors (BCR) repertoire profiling, CITEseq analysis and single cell immortalization. We find that antiphospholipid (aPL)-specific B cells are present in the naive compartment, polyreactive, and derived from the natural repertoire. Furthermore, B cells with aPL specificities are not eliminated in patients with PAPS, persist until the memory and long-lived plasma cell stages, likely after defective germinal center selection, while becoming less polyreactive. Lastly, compared with the non-PAPS cells, PAPS B cells exhibit distinct IFN and APRIL signature as well as dysregulated mTORC1 and MYC pathways. Our findings may thus elucidate the survival mechanisms of these autoreactive B cells and suggest potential therapeutic targets for the treatment of PAPS.
Collapse
Affiliation(s)
- Yannick Dieudonné
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France.
| | - Raquel Lorenzetti
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Iga Janowska
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Quentin Frenger
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Léa Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Olivier Vollmer
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Francesco Carbone
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Zhu Chengsong
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marine Luka
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Sabine Depauw
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Wadier
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Benoît Nespola
- Laboratoire d'Immunologie, Plateau technique de Biologie, Strasbourg University Hospital, Strasbourg, France
| | - Agathe Herb
- Hematology laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Reinhard Edmund Voll
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Ménager
- Université Paris Cité, Institut Imagine, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Thierry Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- CIBSS - Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France.
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
2
|
Liu JC, Zeng Q, Duan YG, Yeung WSB, Li RHW, Ng EHY, Cheung KW, Zhang Q, Chiu PCN. B cells: roles in physiology and pathology of pregnancy. Front Immunol 2024; 15:1456171. [PMID: 39434884 PMCID: PMC11491347 DOI: 10.3389/fimmu.2024.1456171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
B cells constitute a diverse and adaptable immune cell population with functions that can vary according to the environment and circumstances. The involvement of B cells in pregnancy, as well as the associated molecular pathways, has yet to be investigated. This review consolidates current knowledge on B cell activities and regulation during pregnancy, with a particular focus on the roles of various B cell subsets and the effects of B cell-derived factors on pregnancy outcomes. Moreover, the review examines the significance of B cell-associated autoantibodies, cytokines, and signaling pathways in relation to pregnancy complications such as pregnancy loss, preeclampsia, and preterm birth.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Guffroy A, Jacquel L, Seeleuthner Y, Paul N, Poindron V, Maurier F, Delannoy V, Voegeli AC, Zhang P, Nespola B, Molitor A, Apithy MJ, Soulas-Sprauel P, Martin T, Voll RE, Bahram S, Gies V, Casanova JL, Cobat A, Boisson B, Carapito R, Korganow AS. An immunogenomic exome landscape of triple positive primary antiphospholipid patients. Genes Immun 2024; 25:108-116. [PMID: 38267542 DOI: 10.1038/s41435-024-00255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Primary antiphospholipid syndrome is characterized by thrombosis and autoantibodies directed against phospholipids or associated proteins. The genetic etiology of PAPS remains unknown. We enrolled 21 patients with thromboembolic events associated to lupus anticoagulant, anticardiolipin and anti β2 glycoprotein1 autoantibodies. We performed whole exome sequencing and a systematic variant-based analysis in genes associated with thrombosis, in candidate genes previously associated with APS or inborn errors of immunity. Data were compared to public databases and to a control cohort of 873 non-autoimmune patients. Variants were identified following a state-of-the-art pipeline. Enrichment analysis was performed by comparing with the control cohort. We found an absence of significant HLA bias and genetic heterogeneity in these patients, including when testing combinations of rare variants in genes encoding for proteins involved in thrombosis and of variants in genes linked with inborn errors of immunity. These results provide evidence of genetic heterogeneity in PAPS, even in a homogenous series of triple positive patients. At the individual scale, a combination of variants may participate to the breakdown of B cell tolerance and to the vessel damage.
Collapse
Affiliation(s)
- A Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France.
- University de Strasbourg, Faculty of Medicine, F-67000, Strasbourg, France.
| | - L Jacquel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
- University de Strasbourg, Faculty of Medicine, F-67000, Strasbourg, France
| | - Y Seeleuthner
- University Paris-Cité, Imagine Institute, F-75015, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - N Paul
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - V Poindron
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
| | - F Maurier
- Department of Internal Medicine, Belle-Isle Hospital, Metz, France
| | - V Delannoy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
| | - A C Voegeli
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Universitaire, Strasbourg, France
| | - P Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - B Nespola
- Laboratoire d'Immunologie, Plateau technique de Biologie, Hôpital Universitaire, Strasbourg, France
| | - A Molitor
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - M J Apithy
- Laboratoire d'exploration du HLA, Centre de Transfusion sanguine, Strasbourg, France
| | - P Soulas-Sprauel
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
- University Strasbourg, Faculty of Pharmacy, F-67400, Illkirch, France
| | - T Martin
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
- University de Strasbourg, Faculty of Medicine, F-67000, Strasbourg, France
| | - R E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - S Bahram
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - V Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
| | - J L Casanova
- University Paris-Cité, Imagine Institute, F-75015, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - A Cobat
- University Paris-Cité, Imagine Institute, F-75015, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - B Boisson
- University Paris-Cité, Imagine Institute, F-75015, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - R Carapito
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France
- University de Strasbourg, Faculty of Medicine, F-67000, Strasbourg, France
| | - A S Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.
- University Strasbourg, INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), F-67000, Strasbourg, France.
- University de Strasbourg, Faculty of Medicine, F-67000, Strasbourg, France.
| |
Collapse
|
4
|
Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, Torres K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci 2023; 24:12563. [PMID: 37628744 PMCID: PMC10454528 DOI: 10.3390/ijms241612563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The coagulation and immune systems, two vital systems in the human body, share intimate connections that fundamentally determine patient health. These systems work together through several common regulatory pathways, including the Tissue Factor (TF) Pathway. Immune cells expressing TF and producing pro-inflammatory cytokines can influence coagulation, while coagulation factors and processes reciprocally impact immune responses by activating immune cells and controlling their functions. These shared pathways contribute to maintaining health and are also involved in various pathological conditions. Dysregulated coagulation, triggered by infection, inflammation, or tissue damage, can result in conditions such as disseminated intravascular coagulation (DIC). Concurrently, immune dysregulation may lead to coagulation disorders and thrombotic complications. This review elucidates these intricate interactions, emphasizing their roles in the pathogenesis of autoimmune diseases and cancer. Understanding the complex interplay between these systems is critical for disease management and the development of effective treatments. By exploring these common regulatory mechanisms, we can uncover innovative therapeutic strategies targeting these intricate disorders. Thus, this paper presents a comprehensive overview of the mutual interaction between the coagulation and immune systems, highlighting its significance in health maintenance and disease pathology.
Collapse
Affiliation(s)
- Grzegorz Wilhelm
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Anna Przysucha
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Kamil Torres
- Department of Plastic and Reconstructive Surgery and Microsurgery, Medical University of Lublin, 20-059 Lublin, Poland; (G.W.); (K.T.)
| |
Collapse
|
5
|
Yun Z, Duan L, Liu X, Cai Q, Li C. An update on the biologics for the treatment of antiphospholipid syndrome. Front Immunol 2023; 14:1145145. [PMID: 37275894 PMCID: PMC10237350 DOI: 10.3389/fimmu.2023.1145145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis and pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Although anticoagulation is the primary treatment for APS, it fails in approximately 20-30% of obstetric APS cases and more than 30% of thrombotic APS cases. Therefore, there is a need for new, targeted treatments beyond anticoagulants. Biologics, such as rituximab and eculizumab, have been recommended for refractory catastrophic APS. This review focuses on the recent advancements in the pathogenesis of APS and explores the potential of targeted treatments, including eculizumab, rituximab, belimumab, daratumumab, obinutuzumab, and anti-TNF-α antibodies, for APS management.
Collapse
Affiliation(s)
- Zelin Yun
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Lizhi Duan
- Department of Rheumatology and Immunology, Gangkou Hospital of Hebei Port Group Company Limited, Qinhuangdao, Hebei, China
| | - Xiangjun Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Qingmeng Cai
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
| |
Collapse
|
6
|
Mekhno N, Yaremchuk O. Impact of nitric oxide synthesis modulators on the state of humoral immune system in experimental antiphospholipid syndrome. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e94246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Antiphospholipid syndrome is an autoimmune disease of multiple venous and/or arterial thrombosis and/or pregnancy loss. Oxidative stress only enhances the body’s immune response. In pathological conditions, the formation of nitric oxide is disrupted, which can be manifested by vasoconstriction, increased coagulation, and endothelial dysfunction.
Objective: The aim of the research was to study the level of immunoglobulins and circulating immune complexes (CICs) in experimental antiphospholipid syndrome and its correction with L-arginine and aminoguanidine.
Materials and methods: Antiphospholipid syndrome was modeled on white female BALB/c mice. L-arginine (25 mg/kg) and aminoguanidine (10 mg/kg) were used for its correction. The content of immunoglobulins and CICs was studied.
Results: It was established that the level of immunoglobulins (Ig) and circulating immune complexes increased in the group of animals with antiphospholipid syndrome compare to the control. The levels of IgA and CICs decreased significantly, and the levels of IgM and IgG did not change in the mice with antiphospholipid syndrome and L-arginine correction. In cases of aminoguanidine administration, decreased IgM and IgG levels and no significant decrease in IgA and CICs was evidenced compare to the animals with antiphospholipid syndrome. In cases of using a combination of L-arginine and aminoguanidine agents, only IgM did not change, all other parameters decreased compare to the animals with APS.
Conclusion: The parameters of the humoral immunity in female mice with experimental antiphospholipid syndrome increase. The level of immunoglobulins and circulating immune complexes decrease depending on the chosen correction agents or their complex administration. Thus, L-arginine and aminoguanidine has a positive effect on various immunity responses by decreasing the negative impact of pathobiochemical alterations.
Collapse
|
7
|
B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J Clin Med 2022; 12:jcm12010018. [PMID: 36614819 PMCID: PMC9821657 DOI: 10.3390/jcm12010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease characterized by thrombosis, pregnancy morbidity, and the presence of antiphospholipid antibodies (aPL). Anticoagulants form the mainstay of treatment in PAPS. A growing number of studies suggest a previously underappreciated role of the immune system in the pathophysiology of PAPS. Although B-cells are strongly implicated in the pathophysiology of other autoimmune diseases such as systemic lupus erythematosus (SLE), little is known about the role of B-cells in PAPS. Shifts in B-cell subsets including increases in plasmablasts and higher levels of BAFF are present in patients with PAPS. However, while treatment with rituximab and belimumab may ameliorate thrombotic and non-thrombotic manifestations of PAPS, these treatments do not reduce aPL serum levels, suggesting that B-cells contribute to the pathophysiology of APS beyond the production of autoantibodies.
Collapse
|
8
|
Gan Y, Zhong X, Zhao Y, Li G, Ye H, Li C. Low dose versus standard dose rituximab for the treatment of antiphospholipid syndrome: A pilot study from a tertiary medical center. Front Immunol 2022; 13:971366. [PMID: 36405743 PMCID: PMC9670802 DOI: 10.3389/fimmu.2022.971366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/11/2022] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND To investigate the therapeutic effects and safety of low-dose and standard-dose rituximab (RTX) in the treatment of antiphospholipid syndrome (APS). METHODS In this real-world study, we included 22 consecutive patients with APS who received RTX. Standard dose (SD) was defined as an overall dosage of RTX ≥ 1000mg in the induction period, and low dose (LD) was defined as an overall dosage of RTX <1000mg. RESULTS Of included patients, 1 patients died, 2 patients withdrew and 19 patients completed 6-month follow-up. Nine patients received SD-RTX and 13 patients received LD-RTX, and elder patients [LD-RTX vs. SD-RTX: (49.1 ± 15.5) vs. (35.8 ± 12.3) years, p = 0.044] and patients with later-onset [LD-RTX vs. SD-RTX: (46.8 ± 16.3) vs. (31.3 ± 13.6) years, p = 0.029] were more frequently included in LD-RTX than SD-RTX. Following 6 month RTX treatment, 8 patients (42.1%) achieved complete remission, 8 patients (42.1%) achieved partial remission and 3 patients (15.8%) showed no remission. The titers of anticardiolipin antibodies [baseline vs. 6 months: 30.8 (10.7, 90) vs. 19.5 (2.45, 69.10) U/L, p = 0.023] and the levels of erythrocyte sedimentation rate [baseline vs. 6 months: 29 (6, 63) vs. '6 (3, 14) mm/h, p = 0.021] exhibited a significantly decrease in all APS patients. Remission rate and titers of anti-β2-glycoprotein I and lupus anticoagulant did not differ significantly between two groups. CONCLUSION RTX might be a safe and effective option for patients with APS, and low dose confers equal efficacy as standard dose. Further cohort studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Yuzhou Gan
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
- Center of Clinical Immunology, Peking University, Beijing, China
| | - Xue Zhong
- Department of Pharmacy, Peking University People’s Hospital, Beijing, China
| | - Yawei Zhao
- Department of Rheumatology and Immunology, Luohe Central Hospital, Luohe, Henan, China
| | - Gongming Li
- Department of Rheumatology, Linyi Traditional Chinese Medicine Hospital, Linyi, Shandong, China
| | - Hua Ye
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
- Center of Clinical Immunology, Peking University, Beijing, China
| | - Chun Li
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People’s Hospital, Beijing, China
- Center of Clinical Immunology, Peking University, Beijing, China
| |
Collapse
|
9
|
Mahdy SH, Abd Elkader NM, Kassim NA, ElHady MM. Genetic variation in toll-like receptor 4 gene with primary antiphospholipid syndrome susceptibility: a cohort of Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
As toll-like receptor 4 (TLR4) plays important roles in cellular immunity and TLR4 polymorphisms have been shown to be associated with susceptibility to a range of diseases, the present study aimed to investigate the association between TLR4 gene polymorphisms and the incidence of primary antiphospholipid syndrome (PAPS).
Methods
Two TLR4 single nucleotide polymorphisms (rs4986790 and rs4986791) were assessed in 110 subjects of Egyptian ethnicity, including 65 female patients with PAPS and 45 matched healthy controls, using polymerase chain reaction-restriction fragment length polymorphism. Results were verified using automated sequencing.
Results
The homozygous wild-type (AA, aspartic acid) rs4986790 variant and (CC, threonine) rs4986791 variant were the predominant genotypes in the control and PAPS groups.
Conclusion
The results of this preliminary study of TLR4 gene variants among patients with PAPS in an Egyptian population found no association between the rs4986790 and rs4986791 variants and susceptibility to PAPS.
Collapse
|
10
|
Xie W, Ji L, Zhang Z. Sirolimus Monotherapy for Thrombocytopenia in Primary Antiphospholipid Syndrome: A Pilot Study From a Tertiary Referral Center. Front Immunol 2022; 13:857424. [PMID: 35401500 PMCID: PMC8989728 DOI: 10.3389/fimmu.2022.857424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 01/20/2023] Open
Abstract
Background Thrombocytopenia (TP) is considered as a warning sign of high-risk antiphospholipid syndrome (APS) and sometimes a paradoxical sign of anti-thrombosis treatment. Currently, there is an extreme paucity of effective and safe drugs for long-term management of TP in primary APS patients; therefore, we explored the efficacy and safety of sirolimus monotherapy. Methods In this real-world study, we included 7 consecutive patients with primary APS who received sirolimus monotherapy for TP. Oral sirolimus was initiated at a dose of 1–2 mg once daily and then adjusted primarily based on clinical efficacy and tolerance, with consideration of the sirolimus trough concentration of ≤15 ng/ml. Results Of included patients, the median age was 58 years with a median disease course of 1.5 years and 4 patients were treatment-naïve. All patients completed 6 months of sirolimus therapy with a median follow-up of 6 months (range: 6–15). All patients received sirolimus monotherapy for TP during the entire follow-up, without any additional agents. Overall, the platelet count exhibited a substantially increasing trend after sirolimus administration during the first 6 months (p < 0.001) and stability later. Specifically, the median platelet count was significantly increased from 59 × 109/l before sirolimus to 90 × 109/l at month 1 (p = 0.028), 131 × 109/l at 3 months (p = 0.028), and 178 × 109/l at 6 months (p = 0.018). Overall and complete responses were respectively achieved in 6 (85.7%) and 5 (71.4%) patients at month 6. Importantly, overall response was achieved in all 4 treatment-naïve patients. Additionally, there were different extents of decline in the titers of antiphospholipid antibodies after sirolimus treatment. Regarding safety, only one patient experienced an elevated cholesterol level with recovery after atorvastatin treatment. Conclusion Sirolimus monotherapy confers good efficacy and tolerance for TP in primary APS patients and therefore may be considered as a first-line therapy.
Collapse
Affiliation(s)
- Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Lanlan Ji
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| |
Collapse
|