1
|
Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediators Inflamm 2022; 2022:9860855. [PMID: 35757108 PMCID: PMC9232315 DOI: 10.1155/2022/9860855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is still a major cause of concern for public health, and out of all the trauma-related injuries, it makes the highest contribution to death and disability worldwide. Patients of TBI continue to suffer from brain injury through an intricate flow of primary and secondary injury events. However, when treatment is provided in a timely manner, there is a significant window of opportunity to avoid a few of the serious effects. Pioglitazone (PG), which has a neuroprotective impact and can decrease inflammation after TBI, activates peroxisome proliferator-activated receptor-gamma (PPARγ). The objective of the study is to examine the existing literature to assess the neuroprotective and anti-inflammatory impact of PG in TBI. It also discusses the part played by microglia and cytokines in TBI. According to the findings of this study, PG has the ability to enhance neurobehavior, decrease brain edema and neuronal injury following TBI. To achieve the protective impact of PG the following was required: (1) stimulating PPARγ; (2) decreasing oxidative stress; (3) decreasing nuclear factor kappa B (NF-κB), interleukin 6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and C-C motif chemokine ligand 20 (CCL20) expression; (4) limiting the increase in the number of activated microglia; and (5) reducing mitochondrial dysfunction. The findings indicate that when PIG is used clinically, it may serve as a neuroprotective anti-inflammatory approach in TBI.
Collapse
|
2
|
Ortona S, Barisione C, Ferrari PF, Palombo D, Pratesi G. PCSK9 and Other Metabolic Targets to Counteract Ischemia/Reperfusion Injury in Acute Myocardial Infarction and Visceral Vascular Surgery. J Clin Med 2022; 11:jcm11133638. [PMID: 35806921 PMCID: PMC9267902 DOI: 10.3390/jcm11133638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury complicates both unpredictable events (myocardial infarction and stroke) as well as surgically-induced ones when transient clampage of major vessels is needed. Although the main cause of damage is attributed to mitochondrial dysfunction and oxidative stress, the use of antioxidant compounds for protection gave poor results when challenged in clinics. More recently, there is an assumption that, in humans, profound metabolic changes may prevail in driving I/R injury. In the present work, we narrowed the field of search to I/R injury in the heart/brain/kidney axis in acute myocardial infarction, major vascular surgery, and to the current practice of protection in both settings; then, to help the definition of novel strategies to be translated clinically, the most promising metabolic targets with their modulatory compounds—when available—and new preclinical strategies against I/R injury are described. The consideration arisen from the broad range of studies we have reviewed will help to define novel therapeutic approaches to ensure mitochondrial protection, when I/R events are predictable, and to cope with I/R injury, when it occurs unexpectedly.
Collapse
Affiliation(s)
- Silvia Ortona
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
| | - Chiara Barisione
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-010-555-7881
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145 Genoa, Italy;
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, Via Montallegro, 1, 16145 Genoa, Italy
| | - Giovanni Pratesi
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
3
|
Silva JC, Bavestrello M, Gazzola V, Spinella G, Pane B, Grasselli E, Demori I, Canesi L, Emionite L, Cilli M, Buschiazzo A, Sambuceti G, Pitta IR, Pitta MG, Perego P, Palombo D, Abdalla DSP. Ischemia-reperfusion damage is attenuated by GQ-11, a peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, after aorta clamping in rats. Life Sci 2022; 297:120468. [DOI: 10.1016/j.lfs.2022.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
4
|
Renal Ischemia/Reperfusion Early Induces Myostatin and PCSK9 Expression in Rat Kidneys and HK-2 Cells. Int J Mol Sci 2021; 22:ijms22189884. [PMID: 34576046 PMCID: PMC8465118 DOI: 10.3390/ijms22189884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
During visceral interventions, the transient clampage of supraceliac aorta causes ischemia/reperfusion (I/R) in kidneys, sometime resulting in acute renal failure; preclinical studies identified redox imbalance as the main driver of I/R injury. However, in humans, the metabolic/inflammatory responses seem to prevail on oxidative stress. We investigated myostatin (Mstn) and proprotein convertase subtilisin/kexin type 9 (PCSK9), proatherogenic mediators, during renal I/R. Compared to sham-operated animals, the kidneys of rats who had experienced ischemia (30 min) had higher Mstn and PCSK9 expression after 4 h of reperfusion. After 24 h, they displayed tubular necrosis, increased nitrotyrosine positivity, and nuclear peroxisome proliferator-activated receptor gamma coactivator-1alpha relocation, markers of oxidative stress and mitochondria imbalance. Mstn immunopositivity was increased in tubuli, while PCSK9 immunosignal was depleted; systemically, PCSK9 was higher in plasma from I/R rats. In HK-2 cells, both ischemia and reperfusion enhanced reactive oxygen species production and mitochondrial dysfunction. H2O2 upregulated Mstn and PCSK9 mRNA after 1 and 3.5 h, respectively. Accordingly, ischemia early induced Mstn and PCSK9 mRNA; during reperfusion Mstn was augmented and PCSK9 decreased. Mstn treatment early increased PCSK9 expression (within 8 h), to diminish over time; finally, Mstn silencing restrained ischemia-induced PCSK9. Our study demonstrates that renal I/R enhances Mstn and PCSK9 expression and that Mstn induces PCSK9, suggesting them as therapeutic targets for vascular protection during visceral surgery.
Collapse
|
5
|
Yeh JH, Wang KC, Kaizaki A, Lee JW, Wei HC, Tucci MA, Ojeda NB, Fan LW, Tien LT. Pioglitazone Ameliorates Lipopolysaccharide-Induced Behavioral Impairment, Brain Inflammation, White Matter Injury and Mitochondrial Dysfunction in Neonatal Rats. Int J Mol Sci 2021; 22:6306. [PMID: 34208374 PMCID: PMC8231261 DOI: 10.3390/ijms22126306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies have demonstrated that pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, inhibits ischemia-induced brain injury. The present study was conducted to examine whether pioglitazone can reduce impairment of behavioral deficits mediated by inflammatory-induced brain white matter injury in neonatal rats. Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS, 2 mg/kg) was administered to Sprague-Dawley rat pups on postnatal day 5 (P5), and i.p. administration of pioglitazone (20 mg/kg) or vehicle was performed 5 min after LPS injection. Sensorimotor behavioral tests were performed 24 h after LPS exposure, and changes in biochemistry of the brain was examined after these tests. The results show that systemic LPS exposure resulted in impaired sensorimotor behavioral performance, reduction of oligodendrocytes and mitochondrial activity, and increases in lipid peroxidation and brain inflammation, as indicated by the increment of interleukin-1β (IL-1β) levels and number of activated microglia in the neonatal rat brain. Pioglitazone treatment significantly improved LPS-induced neurobehavioral and physiological disturbances including the loss of body weight, hypothermia, righting reflex, wire-hanging maneuver, negative geotaxis, and hind-limb suspension in neonatal rats. The neuroprotective effect of pioglitazone against the loss of oligodendrocytes and mitochondrial activity was associated with attenuation of LPS-induced increment of thiobarbituric acid reactive substances (TBARS) content, IL-1β levels and number of activated microglia in neonatal rats. Our results show that pioglitazone prevents neurobehavioral disturbances induced by systemic LPS exposure in neonatal rats, and its neuroprotective effects are associated with its impact on microglial activation, IL-1β induction, lipid peroxidation, oligodendrocyte production and mitochondrial activity.
Collapse
Affiliation(s)
- Jiann-Horng Yeh
- Department of Neurobiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan; (K.-C.W.); (H.-C.W.)
| | - Kuo-Ching Wang
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan; (K.-C.W.); (H.-C.W.)
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Asuka Kaizaki
- Department of Pharmacology, Toxicology and Therapeutics, Division of Toxicology, School of Pharmacy, Showa University, Shingawa-ku, Tokyo 142-8555, Japan;
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.L.); (N.B.O.); (L.-W.F.)
| | - Jonathan W. Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.L.); (N.B.O.); (L.-W.F.)
| | - Han-Chi Wei
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan; (K.-C.W.); (H.-C.W.)
| | - Michelle A. Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Norma B. Ojeda
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.L.); (N.B.O.); (L.-W.F.)
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (J.W.L.); (N.B.O.); (L.-W.F.)
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan; (K.-C.W.); (H.-C.W.)
| |
Collapse
|
6
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
7
|
Zou C, Zhou Z, Tu Y, Wang W, Chen T, Hu H. Pioglitazone Attenuates Reoxygenation Injury in Renal Tubular NRK-52E Cells Exposed to High Glucose via Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Front Pharmacol 2020; 10:1607. [PMID: 32038263 PMCID: PMC6989595 DOI: 10.3389/fphar.2019.01607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
Renal ischemia-reperfusion injury is a major cause of acute kidney injury. In the present study, we investigated the effects of pioglitazone on hypoxia/reoxygenation (H/R) injury in rat renal tubular epithelial cells (RTECs) under normal- (NG) or high-glucose (HG) culture conditions via evaluating oxidative stress and endoplasmic reticulum stress (ERS). The RTECs (NRK-52E cells) were divided into six groups as follows: NG group, HG group, NG + H/R group, HG + H/R group, NG + Pio + H/R group, and HG + Pio + H/R group, among which cells in H/R groups were subjected to 4 h of hypoxia followed by 12 h of reoxygenation. After that, the cells were evaluated using the Cell Counting Kit-8 assay for the determination of their viability and flow cytometry assay for the detection of apoptosis. The levels of superoxide dismutase (SOD), glutathione reductase (GSH), catalase (CAT), and malondialdehyde (MDA) were determined via colorimetric chemical assays. In addition, the expression of ERS-associated proteins, i.e. ATF4, ATF6, GRP78, and CHOP, was determined via western blotting. A HG environment could reduce the viability and increase the apoptotic rate of NRK-52E cells with increased MDA levels and decreased SOD, CAT, and GSH levels, and upregulate the expression of ERS-associated proteins, i.e. ATF4, ATF6, and GRP78. H/R injury could further aggravate changes in the above indicators, but pioglitazone could significantly reverse such changes and alleviate cell injury. Thus, Pioglitazone exhibits a cytoprotective effect on RTECs against H/R injury under NG or HG culture conditions by inhibiting oxidative stress and ERS.
Collapse
Affiliation(s)
- Cong Zou
- Department of Endocrinology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyu Zhou
- Department of Pathology, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yunming Tu
- Department of Endocrinology, the Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weichao Wang
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tongchang Chen
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|