1
|
Minard G, Kahilainen A, Biere A, Pakkanen H, Mappes J, Saastamoinen M. Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant. Funct Ecol 2022; 36:2873-2888. [PMID: 36632135 PMCID: PMC9826300 DOI: 10.1111/1365-2435.14177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/26/2022] [Indexed: 01/14/2023]
Abstract
Many specialist herbivores have evolved strategies to cope with plant defences, with gut microbiota potentially participating to such adaptations.In this study, we assessed whether the history of plant use (population origin) and microbiota may interact with plant defence adaptation.We tested whether microbiota enhance the performance of Melitaea cinxia larvae on their host plant, Plantago lanceolata and increase their ability to cope the defensive compounds, iridoid glycosides (IGs).The gut microbiota were significantly affected by both larval population origin and host plant IG level. Contrary to our prediction, impoverishing the microbiota with antibiotic treatment did not reduce larval performance.As expected for this specialized insect herbivore, sequestration of one of IGs was higher in larvae fed with plants producing higher concentration of IGs. These larvae also showed metabolic signature of intoxication (i.e. decrease in Lysine levels). However, intoxication on highly defended plants was only observed when larvae with a history of poorly defended plants were simultaneously treated with antibiotics.Our results suggest that both adaptation and microbiota contribute to the metabolic response of herbivores to plant defence though complex interactions. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Guillaume Minard
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Université de LyonLyonFrance
- Ecologie MicrobienneUMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1VilleurbanneFrance
| | - Aapo Kahilainen
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Finnish Environment InstituteBiodiversity CentreHelsinkiFinland
| | - Arjen Biere
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Hannu Pakkanen
- Department of ChemistryUniversity of JyväskyläJyväskyläFinland
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Tentative characterization of precursor compounds and co-factors of pigment formation in production of ‘wu mi’ from Vaccinium bracteatum Thunb. Leaves. Food Chem 2018; 262:199-205. [DOI: 10.1016/j.foodchem.2018.04.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/31/2023]
|
3
|
Burse A, Boland W. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application? ACTA ACUST UNITED AC 2018; 72:417-427. [PMID: 28593879 DOI: 10.1515/znc-2017-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.
Collapse
|
4
|
Ilc T, Parage C, Boachon B, Navrot N, Werck-Reichhart D. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:509. [PMID: 27200002 PMCID: PMC4844611 DOI: 10.3389/fpls.2016.00509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives.
Collapse
|
5
|
Hussain KJ, Krishnan SM, Johny S, Whitman DW. Phenotypic Plasticity in a Gregarine Parasite (Apicomplexa: Eugregarinordia) Infecting Grasshoppers. COMP PARASITOL 2013. [DOI: 10.1654/4602.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Zhang J, Friman VP, Laakso J, Mappes J. Interactive effects between diet and genotypes of host and pathogen define the severity of infection. Ecol Evol 2012; 2:2347-56. [PMID: 23139892 PMCID: PMC3488684 DOI: 10.1002/ece3.356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 01/07/2023] Open
Abstract
Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of host-pathogen-environment dynamics. Here, we investigated how the level of opportunist pathogen virulence, strength of host immunity and the host condition manipulated via diet affect the survival of wood tiger moth Parasemia plantaginis (Arctidae). Larvae from "low cuticular melanin" and "high cuticular melanin" (considered as low and high pathogen resistance, respectively) selection lines were infected with moderately and highly virulent bacteria strains of Serratia marcescens, while simultaneously manipulating host diet (with or without antibacterial compounds). We measured host survival and food preference before and after infection to test whether the larvae "self-medicate" by choosing an anti-infection diet (Plantago major, i.e., plantain leaf) over lettuce (Lactuca sativa). "High melanin" larvae were more resistant than "low melanin" larvae to the less virulent strain that had slower growth and colonization rate compared with the more virulent strain. Cuticular melanin did not enhance survival when the larvae were infected with the highly virulent strain. Anti-infection diet enhanced survival of the "high melanin" but not the "low melanin" hosts. Survival was dependent on family origin even within the melanin selection lines. Despite the intrinsic preference for lettuce, no evidence of self-medication was found. These results demonstrate that the relative benefit of host cuticular melanin depends on both diet and pathogen virulence: plantain diet only boosted the immunity of already resistant "high melanin" hosts, and cuticular melanin increased host survival only when infected with moderately virulent pathogen. Moreover, there was considerable variation in host survival between families within both melanin lines suggesting genetic basis for resistance. These results indicate that although melanin is an important predictor of insect immunity, its effect on disease outcomes greatly depends on other interacting factors.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä P.O. Box 35, 40014, Jyväskylä, Finland ; Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Helsinki P.O. Box 65, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
7
|
van Nouhuys S, Reudler JH, Biere A, Harvey JA. Performance of secondary parasitoids on chemically defended and undefended hosts. Basic Appl Ecol 2012. [DOI: 10.1016/j.baae.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Baden CU, Franke S, Dobler S. Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0103-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Diet quality can play a critical role in defense efficacy against parasitoids and pathogens in the Glanville fritillary (Melitaea cinxia). J Chem Ecol 2012; 38:116-25. [PMID: 22273742 DOI: 10.1007/s10886-012-0066-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/15/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Numerous herbivorous insect species sequester noxious chemicals from host plants that effectively defend against predators, and against parasitoids and pathogens. Sequestration of these chemicals may be expensive and involve a trade off with other fitness traits. Here, we tested this hypothesis. We reared Glanville fritillary butterfly (Melitaea cinxia L.) larvae on plant diets containing low- and high-levels of iridoid glycosides (IGs) (mainly aucubin and catalpol) and tested: 1) whether IGs affect the herbivore's defense against parasitoids (measured as encapsulation rate) and bacterial pathogens (measured as herbivore survival); 2) whether parasitoid and bacterial defenses interact; and 3) whether sequestration of the plant's defense chemicals incurs any life history costs. Encapsulation rates were stronger when there were higher percentages of catalpol in the diet. Implanted individuals had greater amounts of IGs in their bodies as adults. This suggests that parasitized individuals may sequester more IGs, increase their feeding rate after parasitism, or that there is a trade off between detoxification efficiency and encapsulation rate. Larval survival after bacterial infection was influenced by diet, but probably not by diet IG content, as changes in survival did not correlate linearly with the levels of IGs in the diet. However, M. cinxia larvae with good encapsulation abilities were better defended against bacteria. We did not find any life history costs of diet IG concentration for larvae. These results suggest that the sequestering of plant defense chemicals can help herbivorous insects to defend against parasitoids.
Collapse
|
10
|
Quintero C, Bowers MD. Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 2011; 168:471-81. [DOI: 10.1007/s00442-011-2114-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
|
11
|
Dobler S, Petschenka G, Pankoke H. Coping with toxic plant compounds--the insect's perspective on iridoid glycosides and cardenolides. PHYTOCHEMISTRY 2011; 72:1593-1604. [PMID: 21620425 DOI: 10.1016/j.phytochem.2011.04.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 05/27/2023]
Abstract
Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.
Collapse
Affiliation(s)
- Susanne Dobler
- Biocenter Grindel, Hamburg University, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
12
|
|
13
|
Murphy SM, Lill JT. Winter predation of diapausing cocoons of slug caterpillars (Lepidoptera: Limacodidae). ENVIRONMENTAL ENTOMOLOGY 2010; 39:1893-1902. [PMID: 22182555 DOI: 10.1603/en10094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Predators exert strong top-down pressure on herbivorous insects, but research on how predators affect herbivore fitness often focuses on the more active juvenile and adult life stages while ignoring the pupal or cocoon life stage. Few studies have investigated predation of lepidopteran pupae or cocoons and even fewer have investigated species that are not forest pests. Here we present a study on overwinter survival for two moth species in the family Limacodidae, a group of polyphagous species found in deciduous forests. We placed cocoons of the saddleback caterpillar, Acharia stimulea (Clemens), and the spiny oak-slug caterpillar, Euclea delphinii (Boisduval), in the field under saplings of six different tree species and monitored predation and survival. This is the first study to examine predation rate among different host plants within a site. We found that cocoon predation was fairly high and differed significantly between limacodid species (29% for A. stimulea vs. 22% for E. delphinii). Predation rate did not differ among the six host plant species that we tested and also did not vary annually. Through phenotypic selection analyses, we found that cocoon mass affected both the likelihood of predation and overwinter survival; larger cocoons were less likely to be depredated and more likely to successfully emerge the following year. Overall our results indicate that cocoon predation is an important source of mortality for these two limacodid species and that there may be positive selection for greater cocoon mass for both limacodid species.
Collapse
Affiliation(s)
- Shannon M Murphy
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | | |
Collapse
|
14
|
|