1
|
Kasegawa C, Itaguchi Y, Yamawaki Y, Miki M, Hayashi M, Miyazaki M. Effects of within-day intervals on adaptation to visually induced motion sickness in a virtual-reality motorcycling simulator. Sci Rep 2024; 14:21302. [PMID: 39307847 PMCID: PMC11417106 DOI: 10.1038/s41598-024-71526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
This study investigated the effects of the time interval between virtual reality (VR) sessions on visually induced motion sickness (VIMS) reduction to better understand adaptation to and recovery from a nauseating VR experience. The participants experienced two 6-min VR sessions of a first-person motorcycle ride through a head-mounted display with (1) a 6-min interval, (2) an interval until the VIMS score reached zero, and (3) a 60-min interval. The results showed that for each condition, VIMS in the second session was aggravated, unchanged, or attenuated, respectively, indicating that additional resting time was necessary for VIMS adaptation. This study suggests that a certain type of multisensory learning attenuates VIMS symptoms within a relatively short time, requiring at least 20 min of additional resting time after subjective recovery from VIMS symptoms. This finding has important implications for reducing the time interval between repeated challenges when adapting to nauseating stimuli during VR experiences.
Collapse
Affiliation(s)
- Chihiro Kasegawa
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8011, Japan
| | | | - Yumi Yamawaki
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8011, Japan
| | | | - Masami Hayashi
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8011, Japan
| | - Makoto Miyazaki
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, 432-8011, Japan.
- Faculty of Informatics, Shizuoka University, Hamamatsu, 432-8011, Japan.
| |
Collapse
|
2
|
Apinis-Deshaies A, Tremblay J, Trempe M. Temporal and Spatial Accuracy of Reaching Movements do not Improve Off-line. J Mot Behav 2023; 56:241-252. [PMID: 38008910 DOI: 10.1080/00222895.2023.2284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/25/2023] [Indexed: 11/28/2023]
Abstract
Consolidation has been associated with performance gains without additional practice (i.e., off-line learning). However, the movement characteristics improving off-line remain poorly understood. To investigate this question, participants were trained to produce a sequence of planar reaching movements toward four different visual targets. The training session with feedback required them to learn the relative time of the movements, the total movement time and aim accurately at each target. The retention test was performed either 10-min or 24-h after. Results revealed that a 24-h consolidation interval did not result in better temporal or spatial accuracy. This finding suggests that off-line learning may be restricted to sequence production tasks in which the different segments must be regrouped ("chunked") together to accelerate their execution.
Collapse
Affiliation(s)
- Amélie Apinis-Deshaies
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Jonathan Tremblay
- School of Kinesiology and Exercise Science, Faculty of Medecine, Université de Montréal, Canada
| | - Maxime Trempe
- Sport Studies Department, Bishop's University, Sherbrooke, Canada
| |
Collapse
|
3
|
Paraskevopoulos E, Pamboris GM, Plakoutsis G, Papandreou M. Reliability and measurement error of tests used for the assessment of throwing performance in overhead athletes: A systematic review. J Bodyw Mov Ther 2023; 35:284-297. [PMID: 37330783 DOI: 10.1016/j.jbmt.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Throwing Performance (TP) is important in throwing sports. Several tests have been designed to assess TP, and the reliability of these tests was examined in various studies. The aim of this systematic review was to critically appraise and synthesize the studies that examined the reliability of TP tests. METHODS A systematic search was conducted on PubMed, Scopus, CINAHL and SPORTDiscus to identify studies related to TP and reliability. The quality of the included studies was examined through the Quality Appraisal of Reliability Studies (QAREL) tool. Reliability was assessed using the intraclass correlation coefficient (ICC), while responsiveness was assessed using the minimal detectable change (MDC). Sensitivity analysis was conducted to identify whether low-quality studies may have biased the recommendations of this review. RESULTS Seventeen studies were found eligible. The results showed a moderate level of evidence to suggest that TP tests have good reliability (ICC≥0.76). This recommendation was also applied separately when TP tests were used to measure throwing velocity, distance covered, endurance and throwing accuracy. Also, summated MDC scores were reported to assist coaches in decision-making when using TP tests to detect real performance changes. However, sensitivity analysis showed that there is a significant number of low-quality studies. CONCLUSIONS This review revealed that the tests used for throwing performance assessment are reliable; however, due to a significant number of low-quality studies, these results should be used cautiously. Important recommendations of this review may be used in future studies to design high-quality studies.
Collapse
Affiliation(s)
- Eleftherios Paraskevopoulos
- Department of Physiotherapy, University of West Attica, Athens, Greece; Laboratory of Advanced Physiotherapy, University of West Attica, Athens, Greece.
| | - George M Pamboris
- Department of Health Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | - George Plakoutsis
- Department of Physiotherapy, University of West Attica, Athens, Greece; Laboratory of Advanced Physiotherapy, University of West Attica, Athens, Greece
| | - Maria Papandreou
- Department of Physiotherapy, University of West Attica, Athens, Greece; Laboratory of Advanced Physiotherapy, University of West Attica, Athens, Greece
| |
Collapse
|
4
|
Not for kids: 2nd grade school children require more practice than adults to attain long-term gains in a graphomotor task. COGNITIVE DEVELOPMENT 2022. [DOI: 10.1016/j.cogdev.2022.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Larssen BC, Ho DK, Kraeutner SN, Hodges NJ. Combining Observation and Physical Practice: Benefits of an Interleaved Schedule for Visuomotor Adaptation and Motor Memory Consolidation. Front Hum Neurosci 2021; 15:614452. [PMID: 33613210 PMCID: PMC7890187 DOI: 10.3389/fnhum.2021.614452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Visuomotor adaptation to novel environments can occur via non-physical means, such as observation. Observation does not appear to activate the same implicit learning processes as physical practice, rather it appears to be more strategic in nature. However, there is evidence that interspersing observational practice with physical practice can benefit performance and memory consolidation either through the combined benefits of separate processes or through a change in processes activated during observation trials. To test these ideas, we asked people to practice aiming to targets with visually rotated cursor feedback or engage in a combined practice schedule comprising physical practice and observation of projected videos showing successful aiming. Ninety-three participants were randomly assigned to one of five groups: massed physical practice (Act), distributed physical practice (Act+Rest), or one of 3 types of combined practice: alternating blocks (Obs_During), or all observation before (Obs_Pre) or after (Obs_Post) blocked physical practice. Participants received 100 practice trials (all or half were physical practice). All groups improved in adaptation trials and showed savings across the 24-h retention interval relative to initial practice. There was some forgetting for all groups, but the magnitudes were larger for physical practice groups. The Act and Obs_During groups were most accurate in retention and did not differ, suggesting that observation can serve as a replacement for physical practice if supplied intermittently and offers advantages above just resting. However, after-effects associated with combined practice were smaller than those for physical practice control groups, suggesting that beneficial learning effects as a result of observation were not due to activation of implicit learning processes. Reaction time, variable error, and post-test rotation drawings supported this conclusion that adaptation for observation groups was promoted by explicit/strategic processes.
Collapse
Affiliation(s)
- Beverley C Larssen
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Brain Behaviour Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Daniel K Ho
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sarah N Kraeutner
- Brain Behaviour Laboratory, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nicola J Hodges
- Motor Skills Lab, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Yamada C, Itaguchi Y, Fukuzawa K. Effects of the amount of practice and time interval between practice sessions on the retention of internal models. PLoS One 2019; 14:e0215331. [PMID: 30990823 PMCID: PMC6467396 DOI: 10.1371/journal.pone.0215331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 11/30/2022] Open
Abstract
The amount of practice and time interval between practice sessions are important factors that influence motor learning efficiency. Here, we aimed to reveal the relationship between the retention and consolidation of a new internal model, and the amount of practice and time interval between practice sessions. We employed a visuomotor rotation tracking task to test the hypotheses that (1) a new internal model consolidates owing to extensive practice after reaching a task performance plateau and (2) a longer time interval between practice sessions makes it difficult to activate a new internal model. The participants were assigned to one of the four groups that differed in terms of the amount of practice and the time interval between practice sessions. They performed a tracking task in which they experienced 120° clockwise visuomotor rotation and were required to track a moving target on a computer display using a mouse cursor. To evaluate the retention and consolidation of a new internal model, we calculated the aftereffects and savings as measures of motor learning. To the best our knowledge, this is the first study to manipulate both the amount of practice and the time interval between practice sessions simultaneously in one experiment using a visuomotor tracking task. Our results support the previously reported idea that extensive practice is necessary for the consolidation of a new internal model.
Collapse
Affiliation(s)
- Chiharu Yamada
- Graduate School of Letters, Arts and Sciences, Waseda University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- * E-mail:
| | | | - Kazuyoshi Fukuzawa
- School of Humanities and Social Sciences, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Disruption of M1 Activity during Performance Plateau Impairs Consolidation of Motor Memories. J Neurosci 2017; 37:9197-9206. [PMID: 28821677 DOI: 10.1523/jneurosci.3916-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
Upon exposure to a new sensorimotor relationship, motor behaviors iteratively change early in adaptation but eventually stabilize as adaptation proceeds. Behavioral work suggests that motor memory consolidation is initiated upon the attainment of asymptotic levels of performance. Separate lines of evidence point to a critical role of the primary motor cortex (M1) in consolidation. However, a causal relationship between M1 activity during asymptote and consolidation has yet to be demonstrated. The present study investigated this issue in male and female participants using single-pulse transcranial magnetic stimulation (TMS) to interfere with postmovement activity in M1 in two behavioral phases of a ramp-and-hold visuomotor adaptation paradigm. TMS was either provided after each trial of the ramp phase of adaptation when a gradual increase in the visuomotor rotation caused movements to be changing, or after each trial of the hold phase of adaptation when the rotation was held constant and movements tended to stabilize. Consolidation was assessed by measuring performance on the same task 24 h later. Results revealed that TMS did not influence adaptation to the new visuomotor relationship in either condition. Critically, however, TMS disruption of M1 activity selectively impaired consolidation of motor memories when it was provided during the hold phase of adaptation. This effect did not take place when TMS was delivered over adjacent dorsal premotor cortex or when motor behaviors in late adaptation were prevented from plateauing. Together, these data suggest that the impaired consolidation stemmed from interference with mechanisms of repetition-dependent plasticity in M1.SIGNIFICANCE STATEMENT The present work demonstrates that TMS disruption of M1 activity impairs the consolidation of motor memories selectively when performance reaches asymptotic levels during sensorimotor adaptation. These findings provide evidence for a causal contribution of M1 to motor memory formation when movements tend to repeat, likely through mechanisms of repetition-dependent plasticity.
Collapse
|
8
|
Christiansen L, Larsen MN, Grey MJ, Nielsen JB, Lundbye-Jensen J. Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand. Eur J Neurosci 2016; 45:1490-1500. [PMID: 27657352 DOI: 10.1111/ejn.13409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
It is well established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability (CSE) was evaluated from the resting motor threshold (rMT) and recruitment curve parameters following application of transcranial magnetic stimulation (TMS) to the ipsilateral primary motor cortex (iM1) hotspot of the left abductor digiti minimi muscle (ADM). PT led to significant improvements in left-hand motor performance immediately after 6 weeks of training (63 ± 18%, P < 0.001) and 8 days later (76 ± 14%, P < 0.001). In addition, PT led to better task performance compared to NPT (19 ± 15%, P = 0.024 and 27 ± 15%, P = 0.016). Following the initial training session, CSE increased across all subjects. After 6 weeks of training and 8 days later, only PT was accompanied by increased CSE demonstrated by a left and upwards shift in the recruitment curves, e.g. indicated by increased MEPmax (P = 0.012). Eight days after training similar effects were observed, but 14 months later motor performance and CSE were similar between groups. We suggest that progressively adjusting demands for timing and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation training.
Collapse
Affiliation(s)
- Lasse Christiansen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Malte Nejst Larsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael James Grey
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jens Bo Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
10
|
Klein MI, Wheeler NJ, Craig C. Sideways camera rotations of 90° and 135° result in poorer performance of laparoscopic tasks for novices. HUMAN FACTORS 2015; 57:246-261. [PMID: 25850156 DOI: 10.1177/0018720814553027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The aim of this study was to determine the impact of sideways visuomotor rotations between 0° and 180° on novice performance in a laparoscopic simulator. BACKGROUND The laparoscopic surgical environment often involves visuomotor rotations because the laparoscope may be placed to the surgeon's side. Basic research by Cunningham indicated that visuomotor rotations between 90° and 135° result in peak performance decrements. Research by Ames and colleagues failed to replicate Cunningham's results in the laparoscopic environment, possibly due to (a) confounds from carryover effects or (b) use of an alternative laparoscopic training task rather than the straight-line pointing task used by Cunningham. Two experiments were conducted to determine if Cunningham's results generalize to the laparoscopic environment when controlling for carryover effects for a three-dimensional "straight-line" pointing task (Experiment 1) and a laparoscopic training task (Experiment 2). METHOD In Experiments 1 and 2, participants were assigned to one of five visuomotor rotations: 0°, 45°, 90°, 135°, or 180°. Utilizing a laparoscopic simulator, participants performed either a three-dimensional pointing task (Experiment 1) or a peg transfer task (Experiment 2). RESULTS In both experiments, visuomotor rotations of 90° or 135° resulted in the poorest performance. CONCLUSION When controlling for carryover effects, Cunningham's results generalize to novices' performance of a pointing and a peg transfer task in the laparoscopic environment. APPLICATIONS The results indicate that 90° and 135° sideways laparoscope placements may result in worse performance for novices in the laparoscopic environment, indicating potentially longer learning curves for these conditions in the laparoscopic as well as other teleoperation environments.
Collapse
|
11
|
Sleep-dependent motor memory consolidation in older adults depends on task demands. Neurobiol Aging 2014; 36:1409-16. [PMID: 25618616 PMCID: PMC4353561 DOI: 10.1016/j.neurobiolaging.2014.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 12/21/2022]
Abstract
It is often suggested that sleep-dependent consolidation of motor learning is impaired in older adults. The current study challenges this view and suggests that the degree of motor consolidation seen with sleep in older age groups depends on the kinematic demands of the task. We show that, when tested with a classic sequence learning task, requiring individuated finger movements, older adults did not show sleep-dependent consolidation. By contrast, when tested with an adapted sequence learning task, in which movements were performed with the whole hand, sleep-dependent motor improvement was observed in older adults. We suggest that age-related decline in fine motor dexterity may in part be responsible for the previously described deficit in sleep-dependent motor consolidation with aging.
Collapse
|
12
|
Telgen S, Parvin D, Diedrichsen J. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo? J Neurosci 2014; 34:13768-79. [PMID: 25297103 PMCID: PMC6608381 DOI: 10.1523/jneurosci.5306-13.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/17/2014] [Accepted: 08/29/2014] [Indexed: 11/21/2022] Open
Abstract
Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter.
Collapse
Affiliation(s)
- Sebastian Telgen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - Darius Parvin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - Jörn Diedrichsen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| |
Collapse
|
13
|
Mackrous I, Simoneau M. Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed. Neuroscience 2014; 260:12-22. [DOI: 10.1016/j.neuroscience.2013.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
14
|
Albouy G, Vandewalle G, Sterpenich V, Rauchs G, Desseilles M, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P. Sleep stabilizes visuomotor adaptation memory: a functional magnetic resonance imaging study. J Sleep Res 2012; 22:144-54. [PMID: 23121320 DOI: 10.1111/j.1365-2869.2012.01059.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/27/2012] [Indexed: 11/27/2022]
Abstract
The beneficial effect of sleep on motor memory consolidation is well known for motor sequence memory, but remains unsettled for visuomotor adaptation in humans. The aim of this study was to characterize more clearly the influence of sleep on consolidation of visuomotor adaptation using a between-subjects functional magnetic resonance imaging (fMRI) design contrasting sleep to total sleep deprivation. Our behavioural results, based on seven different parameters, show that sleep stabilizes performance whereas sleep deprivation deteriorates it. During training, while a set of cerebellar, striatal and cortical areas is activated in proportion to performance improvement, the recruitment of the hippocampus and frontal cortex protects motor memory against the detrimental effects of sleep deprivation. During retest after sleep loss a cerebello-cortical network, usually involved in the earliest stage of learning, was recruited to perform the task. In contrast, no changes in cerebral activity were observed after sleep, suggesting that it may only support the stabilization of the visuomotor adaptation memory trace.
Collapse
|
15
|
Boutin A, Badets A, Salesse RN, Fries U, Panzer S, Blandin Y. Practice makes transfer of motor skills imperfect. PSYCHOLOGICAL RESEARCH 2011; 76:611-25. [PMID: 21671102 DOI: 10.1007/s00426-011-0355-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/02/2011] [Indexed: 11/30/2022]
Abstract
We investigated the practice-effects on motor skill transfer and the associated representational memory changes that occur during the within-practice and between-practice phases. In two experiments, participants produced extension-flexion movements with their dominant right arm for a limited or prolonged practice session arranged in either a single- or multi-session format. We tested the ability of participants to transfer the original pattern (extrinsic transformation) or the mirrored one (intrinsic transformation) to the non-dominant left arm, 10 min and 24 h after the practice sessions. Results showed that practice induces rapid motor skill improvements that are non-transferable irrespective of the amount of acquisition trials. Furthermore, the extrinsic component of the skill develops early and remains the dominant coding system during practice. Conversely, we found distinct between-practice memory changes: a limited practice induces an off-line development of the extrinsic component, whereas a prolonged practice session subserves the off-line development of the intrinsic component (experiment 2). We provided further evidence that the long-term representation of the motor skill also depends on the nature of the practice session itself: the parsing of practice into multiple sessions narrows the effector-transfer capacities in comparison to a single session (experiment 1). These findings yield theoretical and practical implications that are discussed in the context of recent motor skill learning models.
Collapse
Affiliation(s)
- Arnaud Boutin
- National Centre of Scientific Research, Centre de Recherches sur la Cognition et l'Apprentissage, CeRCA, CNRS UMR 6234, MSHS. Bât A5, University of Poitiers, 5, rue Théodore Lefebvre, 86000, Poitiers, France
| | | | | | | | | | | |
Collapse
|
16
|
Trempe M, Sabourin M, Rohbanfard H, Proteau L. Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Exp Brain Res 2011; 209:181-92. [DOI: 10.1007/s00221-011-2540-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/25/2010] [Indexed: 11/30/2022]
|