1
|
Li Y, Ma M, Shao Y, Wang W. Enhanced effective connectivity from the middle frontal gyrus to the parietal lobe is associated with impaired mental rotation after total sleep deprivation: An electroencephalogram study. Front Neurosci 2022; 16:910618. [PMID: 36248651 PMCID: PMC9566834 DOI: 10.3389/fnins.2022.910618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation impairs cognitive functions, including attention, memory, and decision-making. Studies on the neuro-electro-physiological mechanisms underlying total sleep deprivation (TSD) that impairs spatial cognition are limited. Based on electroencephalogram (EEG) and Exact Low Resolution Brain Electromagnetic Tomography (eLORETA), this study focused on the effects of TSD on mental rotation and the cognitive neural mechanisms underlying its damage. Twenty-four healthy college students completed mental rotation tasks while resting and after 36 h of TSD; their EEG data were simultaneously recorded. The amplitude of P300 component associated with mental rotation was observed and localized through source reconstruction, while changes in effective connectivity between multiple brain regions associated with mental rotation cognitive processing were calculated using isolated effective coherence (iCoh) of eLORETA. Compared with the baseline before TSD, the amplitude of the P300 component related to mental rotation decreased. The task-state data of P300 were localized to the source of the difference in ERP current density, and it was found that the brain regions related to the difference in the decrease in P300 amplitude included the superior parietal lobule, precuneus, prefrontal lobe, and other related regions. Effective connectivity analysis found that TSD enhanced the effective connectivity from the left middle frontal gyrus to the left superior parietal lobule, left inferior parietal lobule, and left precuneus under the identical condition. Pearson correlation analysis showed a positive correlation between the decrease in accuracy of mental rotation and increase in effective connectivity. Thus, our study suggests that TSD impairs the ability of the mental rotation, showing a decrease in P300 amplitude and an enhanced effective connectivity between the middle frontal gyrus and the parietal lobe in the task state.
Collapse
Affiliation(s)
- Yutong Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mengke Ma
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Yongcong Shao,
| | - Wei Wang
- Department of Criminal Psychology, Northwest University of Political Science and Law, Xi’an, China
- Wei Wang,
| |
Collapse
|
2
|
Castillo J, Carmona I, Commins S, Fernández S, Ortells JJ, Cimadevilla JM. Spatial Recognition Memory: Differential Brain Strategic Activation According to Sex. Front Behav Neurosci 2021; 15:736778. [PMID: 34539360 PMCID: PMC8441006 DOI: 10.3389/fnbeh.2021.736778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Human spatial memory research has significantly progressed since the development of computerized tasks, with many studies examining sex-related performances. However, few studies explore the underlying electrophysiological correlates according to sex. In this study event-related potentials were compared between male and female participants during the performance of an allocentric spatial recognition task. Twenty-nine university students took part in the research. Results showed that while general performance was similar in both sexes, the brain of males and females displayed a differential activation. Males showed increased N200 modulation than females in the three phases of memory process (encoding, maintenance, and retrieval). Meanwhile females showed increased activation of P300 in the three phases of memory process compared to males. In addition, females exhibited more negative slow wave (NSW) activity during the encoding phase. These differences are discussed in terms of attentional control and the allocation of attentional resources during spatial processing. Our findings demonstrate that sex modulates the resources recruited to performed this spatial task.
Collapse
Affiliation(s)
- Joaquín Castillo
- Department of Psychology, University of Almería, Almeria, Spain.,Health Research Center, University of Almería, Almeria, Spain
| | - Isabel Carmona
- Department of Psychology, University of Almería, Almeria, Spain.,Health Research Center, University of Almería, Almeria, Spain
| | - Sean Commins
- Department of Psychology, Maynooth University, Kildare, Ireland
| | - Sergio Fernández
- Department of Psychology, University of Almería, Almeria, Spain.,Health Research Center, University of Almería, Almeria, Spain
| | - Juan José Ortells
- Department of Psychology, University of Almería, Almeria, Spain.,Health Research Center, University of Almería, Almeria, Spain
| | - José Manuel Cimadevilla
- Department of Psychology, University of Almería, Almeria, Spain.,Health Research Center, University of Almería, Almeria, Spain
| |
Collapse
|
3
|
Yu L, Wang X, Lyu Y, Ding L, Jia J, Tong S, Guo X. Electrophysiological Evidences for the Rotational Uncertainty Effect in the Hand Mental Rotation: An ERP and ERS/ERD Study. Neuroscience 2020; 432:205-215. [PMID: 32135235 DOI: 10.1016/j.neuroscience.2020.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Rotational uncertainty refers to the fact that the reaction time (RT) for identifying an upright stimulus is longer when the target stimulus is presented in a sequence of stimuli with different orientations (SU condition) than upright stimuli only (AU condition). Up until now, the rotational uncertainty effect has been only revealed by behavior measures, and its underlying neural mechanism remains unclear. In this study, using the hand mental rotation paradigm and electroencephalogram (EEG) recordings, we aimed to find the electrophysiological evidences of the rotational uncertainty from event-related potential (ERP) and event-related (de)synchronization (ERS/ERD) measurements. Compared with the upright hand stimuli in AU condition, the same stimuli in SU condition took longer RT, elicited stronger α-ERD and β-ERD, and evoked larger P100, P300 and the slow wave (SW) from -500 ms to -200 ms before response. In particular, the amplitude of SW difference (i.e., SWSU - SWAU) was negatively correlated with the extent of rotational uncertainty effect (i.e., RTSU - RTAU), with its source mainly in the right precentral and postcentral gyri, precuneus, and the left inferior parietal lobule. Our results suggested that identifying the upright hand stimuli in SU condition induced more activation of motor networks, and the rotational uncertainty influenced multiple cognitive processes from the early visual processing to the late mental rotation and judging phases. The results implied that in SU condition, subjects might maintain readiness for the next possible mental rotation immediately after the previous response, with more attention to the coming visual stimuli. Even for the upright stimuli, they might still prepare for the mental rotation, and even mentally rotate the stimuli in a minor angle.
Collapse
Affiliation(s)
- Lingxiao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Griksiene R, Arnatkeviciute A, Monciunskaite R, Koenig T, Ruksenas O. Mental rotation of sequentially presented 3D figures: sex and sex hormones related differences in behavioural and ERP measures. Sci Rep 2019; 9:18843. [PMID: 31827215 PMCID: PMC6906480 DOI: 10.1038/s41598-019-55433-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Mental rotation of 3D objects demonstrates one of the largest sex differences. We investigated sex and sex hormones-related differences in behaviour and event related potentials (ERP) using a modified Shepard and Metzler task composed of sequentially presented 3D figures in 29 men and 32 women. We demonstrated a significant increase in response time and decrease in both accuracy and positivity of the parietal ERP with increasing angular disparity between the figures. Higher angular disparity evoked an increase of global field power (GFP) from 270 to 460 ms and different activation topographies from 470 to 583 ms with lower parietal, but higher left frontal positivity. Flatter slopes in higher angular disparity condition suggest distinct strategies being implemented depending on the difficulty of the rotation. Men performed the task more accurately than women. Performance accuracy in women tended to be negatively related to estradiol while the response time tended to increase with increasing progesterone. There were no associations with testosterone. Women demonstrated higher GFP and an increased positivity over the parietal scalp area, while men showed higher activation in the left frontal cortex. Together these findings indicate dynamic angular disparity- and sex-related differences in brain activity during mental rotation of 3D figures.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Vilnius University, Vilnius, Lithuania.
| | | | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, Bern, Switzerland
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Varriale V, van der Molen MW, De Pascalis V. Mental rotation and fluid intelligence: A brain potential analysis. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Griksiene R, Monciunskaite R, Arnatkeviciute A, Ruksenas O. Does the use of hormonal contraceptives affect the mental rotation performance? Horm Behav 2018. [PMID: 29522764 DOI: 10.1016/j.yhbeh.2018.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oral contraceptive pill (OC) is one of the most popular form of contraception. Despite both behavioral and neuroimaging evidence of its significant impact on female brain and cognitive functions, much remains to be discovered regarding OCs targets in the brain and mechanisms of action. In the present study mental rotation performance was compared between women using anti-androgenic oral contraceptives (n = 35), naturally cycling (NC) women (n = 33) and men (n = 29). On average, OC users were less accurate than NC women and men. Men performed the task more accurately than NC women, but the difference reached significance only in the highest angular disparity condition (150 deg). The response time was positively related with progesterone level while accuracy was negatively related with 17ß-estradiol level, in NC, but not OC women. The comparison of slope and intercept values (parameters relating response time to angular disparity) revealed the main result of present study: OC users exhibited significantly lower slope compared to men and NC women, but there were no differences in intercept between groups. These results suggest that OC users instead of using rotation in mind strategy implemented some alternative method(s). We conclude that lower performance accuracy of OC users could be related to a less efficient performance strategy.
Collapse
Affiliation(s)
- Ramune Griksiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Rasa Monciunskaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurina Arnatkeviciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Osvaldas Ruksenas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Wang H, Duan J, Liao Y, Wang C, Li H, Liu X. Objects Mental Rotation under 7 Days Simulated Weightlessness Condition: An ERP Study. Front Hum Neurosci 2017; 11:553. [PMID: 29270115 PMCID: PMC5723662 DOI: 10.3389/fnhum.2017.00553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
During the spaceflight under weightlessness condition, human's brain function may be affected by the changes of physiological effects along with the distribution of blood and body fluids to the head. This variation of brain function will influence the performance of astronauts and therefore create possible harm to flight safety. This study employs 20 male subjects in a 7-day-6° head-down tilted (HDT) bed rest model to simulate physiological effects under weightlessness condition, and use behavioral, electrophysiological techniques to compare the changes of mental rotation ability (MR ability) before and after short-term simulated weightlessness state. Behavioral results suggested that significant linear relationship existed between the rotation angle of stimuli and the reaction time, which means mental rotation process do happen during the MR task in simulated weightlessness state. In the first 3 days, the P300 component induced by object mental rotation followed the "down-up-down" pattern. In the following 4 days it changed randomly. On HDT D2, the mean of the amplitude of the P300 was the lowest, while increased gently on HDT D3. There was no obvious changing pattern of the amplitude of P300 observed after 3 days of HDT. Simulated weightlessness doesn't change the basic process of mental rotation. The effect of simulated weightlessness is neural mechanism of self-adaptation. MR ability didn't bounce back to the original level after HDT test.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Jiaobo Duan
- Department of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Liao
- Aviation Psychology Center, Institute of Aviation Medicine, Air Force, Beijing, China
| | - Chuang Wang
- Mental Health Center, 303 Hospital of PLA, Nanning, China
| | - Hongzheng Li
- Mental Health Center, 303 Hospital of PLA, Nanning, China
| | - Xufeng Liu
- Department of Medical Psychology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Mirror-normal difference in the late phase of mental rotation: An ERP study. PLoS One 2017; 12:e0184963. [PMID: 28915254 PMCID: PMC5600392 DOI: 10.1371/journal.pone.0184963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Mirror-normal letter discriminations are thought to require mental rotation in order to transform the rotated alphanumeric character into its canonical orientation. Moreover, out-of-plane rotation is likely to occur after in-plane rotation to fully normalize the mirror version before the final mirror-normal judgment. The so-called rotation-related negativity, which varies with orientation, is found in both ERPonset (averaged with respect to stimulus onset) and ERPRT (averaged with respect to response time), representing the involvement of mental rotation in both time windows. Additionally, the mean amplitude of ERPRT correlates with individual performance. We performed a comprehensive analysis of the mirror-normal differences in the early and late phases of mental rotation and deduced that out-of-plane rotation is more likely to occur in the late phase and interacts with both in-plane rotation and the decision-making process, as indicated by both behavioral and electrophysiological findings.
Collapse
|
9
|
Sladky R, Stepniczka I, Boland E, Tik M, Lamm C, Hoffmann A, Buch JP, Niedermeier D, Field J, Windischberger C. Neurobiological differences in mental rotation and instrument interpretation in airline pilots. Sci Rep 2016; 6:28104. [PMID: 27323913 PMCID: PMC4914984 DOI: 10.1038/srep28104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation.
Collapse
Affiliation(s)
- Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Irene Stepniczka
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.,Cognitive Science Research Platform, University of Vienna, Austria
| | - Edzard Boland
- National Aerospace Centre (NLR), Amsterdam, Netherlands
| | - Martin Tik
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Claus Lamm
- Cognitive Science Research Platform, University of Vienna, Austria.,Social, Cognitive and Affective Neuroscience Unit, Faculty of Psychology, University of Vienna
| | - André Hoffmann
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | | | | | - Joris Field
- National Aerospace Centre (NLR), Amsterdam, Netherlands
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| |
Collapse
|