1
|
Li Y, Yang X. Auditory perceptual ability affects dichotic listening performance in older adults. Laterality 2024:1-33. [PMID: 39495654 DOI: 10.1080/1357650x.2024.2420408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
Age-related changes pose challenges in speech processing for older adults. However, little is known about the role of auditory perceptual ability in their performance in dichotic listening tasks. The present study investigated how older adults' auditory perceptual abilities affected their correct rates and the right ear advantage (REA) in the dichotic listening tasks in two experiments. In Experiment 1, older adults' performance was assessed using dichotic listening tasks based on consonant-vowel (CV) words varying in consonants, vowels, and lexical tones, each presenting distinct auditory perceptual demands. It was found that older adults exhibited decreased correct rates as auditory perceptual demands increased. Moreover, differences in the REA were observed in older listeners, suggesting increased engagement of the hemisphere responsible for acoustic analysis in processing challenging dichotic stimuli. Experiment 2 examined how older individuals' acoustic processing abilities contributed to their dichotic listening performance. It was shown that older adults with acoustic processing abilities comparable to those of younger individuals demonstrated correct rates and REAs similar to those of younger cohorts. These results revealed the nonnegligible role of acoustic processing in the dichotic listening paradigm and the significance of considering listeners' auditory perceptual abilities in investigating language lateralisation using the dichotic listening paradigm.
Collapse
Affiliation(s)
- Yang Li
- School of Foreign Studies, Tongji University, Shanghai, People's Republic of China
| | - Xiaohu Yang
- School of Foreign Studies, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Prete G, Rollo B, Palumbo R, Ceccato I, Mammarella N, Di Domenico A, Capotosto P, Tommasi L. Investigating the effect of rTMS over the temporoparietal cortex on the Right Ear Advantage for perceived and imagined voices. Sci Rep 2024; 14:24930. [PMID: 39438571 PMCID: PMC11496506 DOI: 10.1038/s41598-024-75671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
A Right Ear Advantage (REA) is well-established in perceptual tasks but it has been found also during imagery. It is ascribed to the left temporoparietal activity for language, and it can be absent/reversed in some clinical conditions including auditory hallucinations. We applied 1-Hz repetitive TMS over TP3/TP4 (left/right language areas) identified through neuronavigation in 18 healthy participants, before administering a modified white noise (WN) speech illusion paradigm: a voice was presented at one ear, at the same or lower intensities with respect to binaural WN. In some trials the voice was not presented, but participants were anyway instructed to report in which ear they believed perceiving it in all trials. Results confirmed the REA both when the voice was present (perceptual REA) and when it was absent (imaginative REA). Interestingly, results suggested that the correct localization of the voice when the stimulus was ambiguous (presented at low intensity and "masked" by WN) was better when TMS was applied over the right/left hemisphere, in male participants with a low/high proneness to unusual experiences (e.g., auditory hallucinations), respectively. This interaction must be further explored to shed light on the relationship between hemispheric asymmetries and auditory hallucinations, in healthy and clinical samples.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Benedetta Rollo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Irene Ceccato
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti and Pescara, Via Dei Vestini 29, 66013, Chieti, Italy.
- ITAB Istituto Di Tecnologie Avanzate Biomediche, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy.
| | - Luca Tommasi
- Department of Psychology, 'G. d'Annunzio' University of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
3
|
Bonnet C, Poulin-Charronnat B, Michel-Colent C. Aftereffects of visuomanual prism adaptation in auditory modality: Review and perspectives. Neurosci Biobehav Rev 2024; 164:105814. [PMID: 39032842 DOI: 10.1016/j.neubiorev.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Visuomanual prism adaptation (PA), which consists of pointing to visual targets while wearing prisms that shift the visual field, is one of the oldest experimental paradigms used to investigate sensorimotor plasticity. Since the 2000's, a growing scientific interest emerged for the expansion of PA to cognitive functions in several sensory modalities. The present work focused on the aftereffects of PA within the auditory modality. Recent studies showed changes in mental representation of auditory frequencies and a shift of divided auditory attention following PA. Moreover, one study demonstrated benefits of PA in a patient suffering from tinnitus. According to these results, we tried to shed light on the following question: How could this be possible to modulate audition by inducing sensorimotor plasticity with glasses? Based on the literature, we suggest a bottom-up attentional mechanism involving cerebellar, parietal, and temporal structures to explain crossmodal aftereffects of PA. This review opens promising new avenues of research about aftereffects of PA in audition and its implication in the therapeutic field of auditory troubles.
Collapse
Affiliation(s)
- Clémence Bonnet
- LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, Dijon 21000, France.
| | | | - Carine Michel-Colent
- CAPS, Inserm U1093, Université de Bourgogne, UFR des Sciences du Sport, Dijon F-21000, France
| |
Collapse
|
4
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Angenstein N, Brancucci A. Editorial: Hemispheric asymmetries in the auditory domain, volume II. Front Neurosci 2023; 17:1263317. [PMID: 37670841 PMCID: PMC10476006 DOI: 10.3389/fnins.2023.1263317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Affiliation(s)
- Nicole Angenstein
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma “Foro Italico”, Rome, Italy
| |
Collapse
|
6
|
Medeiros W, Barros T, Caixeta FV. Bibliometric mapping of non-invasive brain stimulation techniques (NIBS) for fluent speech production. Front Hum Neurosci 2023; 17:1164890. [PMID: 37425291 PMCID: PMC10323431 DOI: 10.3389/fnhum.2023.1164890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Language production is a finely regulated process, with many aspects which still elude comprehension. From a motor perspective, speech involves over a hundred different muscles functioning in coordination. As science and technology evolve, new approaches are used to study speech production and treat its disorders, and there is growing interest in the use of non-invasive modulation by means of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Methods Here we analyzed data obtained from Scopus (Elsevier) using VOSViewer to provide an overview of bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling of non-invasive brain stimulation (NIBS) use in speech research. Results In total, 253 documents were found, being 55% from only three countries (USA, Germany and Italy), with emerging economies such as Brazil and China becoming relevant in this topic recently. Most documents were published in this last decade, with 2022 being the most productive yet, showing brain stimulation has untapped potential for the speech research field. Discussion Keyword analysis indicates a move away from basic research on the motor control in healthy speech, toward clinical applications such as stuttering and aphasia treatment. We also observe a recent trend in cerebellar modulation for clinical treatment. Finally, we discuss how NIBS have established over the years and gained prominence as tools in speech therapy and research, and highlight potential methodological possibilities for future research.
Collapse
|
7
|
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol Behav 2023; 261:114073. [PMID: 36608913 DOI: 10.1016/j.physbeh.2023.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The present review considers all papers published on the topic up to the end of the year 2022. Transcranial random noise stimulation (tRNS) is a non-invasive neuromodulation technique introduced about 15 years ago whose use is becoming increasingly widespread in neuroscience. It consists of the application over the scalp of a weak, white noise-like current, through electrodes having a surface of several square centimetres, for a duration ranging from seconds to minutes. Despite its relatively low spatial and temporal resolution, tRNS has well defined effects on central motor excitability, which critically depend on stimulation parameters. These effects seem to be chiefly based on an effect on neuronal membrane sodium channels and can last much longer than the stimulation itself. While the effects at the cellular level in the motor cortex are becoming progressively clear, much more studies are needed to understand the effects of tRNS on motor behaviour and performance, where initial research results are nevertheless promising, in both basic and applied research.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma "Foro Italico", Italy.
| | - Davide Rivolta
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Valerio Manippa
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
8
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Effects of transcranial electrical stimulation techniques on foreign vocabulary learning. Behav Brain Res 2023; 438:114165. [PMID: 36270464 DOI: 10.1016/j.bbr.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Although the use of transcranial electrical stimulation (tES) techniques on healthy population has been linked to facilitating language learning, studies on their effects on foreign language learning processes are scarce and results remain unclear. The objective of this study was to analyze whether tES enhances foreign language learning processes. Sixty-four healthy native Spanish-speaking participants were randomly assigned to four groups (transcranial direct current, transcranial random noise, tDCS-tRNS stimulation, or sham). They completed two intervention sessions with a two-week gap in between. During the first session the participants received stimulation (1.5 mA) while learning new English words and then performed recall and recognition tasks. Learning was assessed at follow-up, two weeks later. No differences in learning between groups were observed in the first session (F(1,61)= .86; p = .36). At follow-up, significantly higher learning accuracy was observed after tRNS compared to sham (p = .037). These results suggest that tRNS could be helpful in improving the processes involved in foreign language vocabulary learning.
Collapse
Affiliation(s)
- Yolanda Balboa-Bandeira
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - M Acebo García-Guerrero
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
9
|
Isik M, Eskikurt G, Erdogan ET. Neuromodulation of the left auditory cortex with transcranial direct current stimulation (tDCS) has no effect on the categorical perception of speech sounds. Neuropsychologia 2023; 178:108442. [PMID: 36481255 DOI: 10.1016/j.neuropsychologia.2022.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/11/2022]
Abstract
Temporal cue analysis in auditory stimulus is essential in the perception of speech sounds. The effect of transcranial direct current stimulation (tDCS) on auditory temporal processing remains unclear. In this study, we examined whether tDCS applied over the left auditory cortex (AC) has a polarity-specific behavioral effect on the categorical perception of speech sounds whose temporal features are modulated. Sixteen healthy volunteers in each group were received anodal, cathodal, or sham tDCS. A phonetic categorization task including auditory stimuli with varying voice onset time was performed before and during tDCS, and responses were analyzed. No statistically significant difference was observed between groups (anode, cathode, sham) and within the groups (pre-tDCS, during tDCS) in comparisons of the slope parameter of the identification function obtained from the phonetic categorization task data. Our results show that a single-session application of tDCS over the left AC does not significantly affect the categorical perception of speech sounds.
Collapse
Affiliation(s)
- Mevlude Isik
- Neurological Sciences Research and Application Center (İSÜCAN), Istinye University, Istanbul, Turkey.
| | - Gokcer Eskikurt
- Department of Physiology, Istinye University, Faculty of Medicine, Istanbul, Turkey.
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koç University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
10
|
Lu H, Zhang Y, Huang P, Zhang Y, Cheng S, Zhu X. Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Front Neurosci 2022; 16:931265. [PMID: 35911997 PMCID: PMC9327643 DOI: 10.3389/fnins.2022.931265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Effective teamwork among military pilots is key to successful mission completion. The underlying neural mechanism of teamwork is thought to be inter-brain synchronization (IBS). IBS could also be explained as an incidental phenomenon of cooperative behavior, but the causality between IBS and cooperative behavior could be clarified by directly producing IBS through extra external stimuli applied to functional brain regions. As a non-invasive technology for altering brain function, transcranial electrical stimulation might have the potential to explore whether top-down enhancement of the synchronization of multiple brains can change cooperative behavioral performance among members of a team. This review focuses on the characteristic features of teamwork among military pilots and variations in neuroimaging obtained by hyper-scanning. Furthermore, we discuss the possibility that transcranial electrical stimulation could be used to improve teamwork among military pilots, try to provide a feasible design for doing so, and emphasize crucial aspects to be addressed by future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Zhu
- Faculty of Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
11
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
12
|
Abstract
Although the population-level preference for the use of the right hand is the clearest example of behavioral lateralization, it represents only the best-known instance of a variety of functional asymmetries observable in humans. What is interesting is that many of such asymmetries emerge during the processing of social stimuli, as often occurs in the case of human bodies, faces and voices. In the present paper, after reviewing previous literature about human functional asymmetries for social and emotional stimuli, we suggest some possible links among them and stress the necessity of a comprehensive account (in both ontogenetic and phylogenetic terms) for these not yet fully explained phenomena. In particular, we propose that the advantages of lateralization for emotion processing should be considered in light of previous suggestions that (i) functional hemispheric specialization enhances cognitive capacity and efficiency, and (ii) the alignment (at the population level) of the direction of behavioral asymmetries emerges, under social pressures, as an evolutionary stable strategy.
Collapse
|
13
|
Brancucci A, Angenstein N. Editorial: Hemispheric Asymmetries in the Auditory Domain. Front Behav Neurosci 2022; 16:892786. [PMID: 35464144 PMCID: PMC9019809 DOI: 10.3389/fnbeh.2022.892786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma “Foro Italico”, Rome, Italy
- *Correspondence: Alfredo Brancucci
| | - Nicole Angenstein
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
14
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Can J Neurol Sci 2021; 49:479-492. [PMID: 34238393 DOI: 10.1017/cjn.2021.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain has the innate ability to undergo neuronal plasticity, which refers to changes in its structure and functions in response to continued changes in the environment. Although these concepts are well established in animal slice preparation models, their application to a large number of human subjects could only be achieved using noninvasive brain stimulation (NIBS) techniques. In this review, we discuss the mechanisms of plasticity induction using NIBS techniques including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (RNS), transcranial ultrasound stimulation (TUS), vagus nerve stimulation (VNS), and galvanic vestibular stimulation (GVS). We briefly introduce these techniques, explain the stimulation parameters and potential clinical implications. Although their mechanisms are different, all these NIBS techniques can be used to induce plasticity at the systems level, to examine the neurophysiology of brain circuits and have potential therapeutic use in psychiatric and neurological disorders. TMS is the most established technique for the treatment of brain disorders, and repetitive TMS is an approved treatment for medication-resistant depression. Although the data on the clinical utility of the other modes of stimulation are more limited, the electrical stimulation techniques (tDCS, tACS, RNS, VNS, GVS) have the advantage of lower cost, portability, applicability at home, and can readily be combined with training or rehabilitation. Further research is needed to expand the clinical utility of NIBS and test the combination of different modes of NIBS to optimize neuromodulation induced clinical benefits.
Collapse
|
16
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
17
|
Packheiser J, Schmitz J, Arning L, Beste C, Güntürkün O, Ocklenburg S. A large-scale estimate on the relationship between language and motor lateralization. Sci Rep 2020; 10:13027. [PMID: 32747661 PMCID: PMC7398911 DOI: 10.1038/s41598-020-70057-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023] Open
Abstract
Human language is dominantly processed in the left cerebral hemisphere in most of the population. While several studies have suggested that there are higher rates of atypical right-hemispheric language lateralization in left-/mixed-handers, an accurate estimate of this association from a large sample is still missing. In this study, we comprised data from 1,554 individuals sampled in three previous studies in which language lateralization measured via dichotic listening, handedness and footedness were assessed. Overall, we found a right ear advantage indicating typical left-hemispheric language lateralization in 82.1% of the participants. While we found significantly more left-handed individuals with atypical language lateralization on the categorical level, we only detected a very weak positive correlation between dichotic listening lateralization quotients (LQs) and handedness LQs using continuous measures. Here, only 0.4% of the variance in language lateralization were explained by handedness. We complemented these analyses with Bayesian statistics and found no evidence in favor of the hypothesis that language lateralization and handedness are related. Footedness LQs were not correlated with dichotic listening LQs, but individuals with atypical language lateralization also exhibited higher rates of atypical footedness on the categorical level. We also found differences in the extent of language lateralization between males and females with males exhibiting higher dichotic listening LQs indicating more left-hemispheric language processing. Overall, these findings indicate that the direct associations between language lateralization and motor asymmetries are much weaker than previously assumed with Bayesian correlation analyses even suggesting that they do not exist at all. Furthermore, sex differences seem to be present in language lateralization when the power of the study is adequate suggesting that endocrinological processes might influence this phenotype.
Collapse
Affiliation(s)
- Julian Packheiser
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Larissa Arning
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
- Department of Psychology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Kornisch M, Robb MP, Jones RD. Estimates of functional cerebral hemispheric differences in monolingual and bilingual people who stutter: dichotic listening paradigm. CLINICAL LINGUISTICS & PHONETICS 2020; 34:774-789. [PMID: 31795770 DOI: 10.1080/02699206.2019.1697372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Recent studies indicate functional cerebral hemispheric processing differences between monolinguals and bilinguals who stutter, as well as monolinguals and bilinguals who do not stutter. Eighty native German speakers, half of whom were also proficient speakers of English as a second language (L2), were assessed on a dichotic listening paradigm using CV syllables as stimuli. The participants were organised into four different groups according to speech status and language ability: 20 monolinguals who stutter, 20 bilinguals who stutter, 20 monolinguals who do not stutter, and 20 bilinguals who do not stutter. A right ear advantage (REA) was observed across all groups with no significant group differences in regard to hemispheric asymmetry. Although MWS (18 dB) and BWS (16 dB) crossed over to an LEA at an earlier point compared to the MWNS (5 dB) and BWNS (2 dB), the difference between groups was minor and not significant. Thus, a significant difference in REA resistance, as proposed by other researchers, was not reflected in the current study neither for people who stutter nor for bilinguals. In addition, no meaningful relationship was found between dichotic listening and stuttering severity, as well as the four language modalities (listening, speaking, reading, writing). Thus, we contend that neither stuttering nor bilingualism has any non-trivial effect on functional cerebral hemispheric differences in language processing in dichotic listening.
Collapse
Affiliation(s)
- Myriam Kornisch
- Communication Sciences & Disorders, University of Canterbury , Christchurch, New Zealand
- Department of Communication Sciences & Disorders, University of Mississippi , Oxford, Mississippi, USA
| | - Michael P Robb
- Communication Sciences & Disorders, University of Canterbury , Christchurch, New Zealand
- Communication Sciences & Disorders, Pennsylvania State University , University Park, Pennsylvania, USA
| | - Richard D Jones
- Communication Sciences & Disorders, University of Canterbury , Christchurch, New Zealand
| |
Collapse
|
19
|
Abstract
Left-hemispheric language dominance is a well-known characteristic of the human language system. However, it has been shown that leftward language lateralization decreases dramatically when people communicate using whistles. Whistled languages present a transformation of a spoken language into whistles, facilitating communication over great distances. In order to investigate the laterality of Silbo Gomero, a form of whistled Spanish, we used a vocal and a whistled dichotic listening task in a sample of 75 healthy Spanish speakers. Both individuals that were able to whistle and to understand Silbo Gomero and a non-whistling control group showed a clear right-ear advantage for vocal dichotic listening. For whistled dichotic listening, the control group did not show any hemispheric asymmetries. In contrast, the whistlers’ group showed a right-ear advantage for whistled stimuli. This right-ear advantage was, however, smaller compared to the right-ear advantage found for vocal dichotic listening. In line with a previous study on language lateralization of whistled Turkish, these findings suggest that whistled language processing is associated with a decrease in left and a relative increase in right hemispheric processing. This shows that bihemispheric processing of whistled language stimuli occurs independent of language.
Collapse
|
20
|
Mei N, Flinker A, Zhu M, Cai Q, Tian X. Lateralization in the dichotic listening of tones is influenced by the content of speech. Neuropsychologia 2020; 140:107389. [PMID: 32057939 DOI: 10.1016/j.neuropsychologia.2020.107389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
Abstract
Cognitive functions, for example speech processing, are distributed asymmetrically in the two hemispheres that mostly have homologous anatomical structures. Dichotic listening is a well-established paradigm to investigate hemispherical lateralization of speech. However, the mixed results of dichotic listening, especially when using tonal languages as stimuli, complicates the investigation of functional lateralization. We hypothesized that the inconsistent results in dichotic listening are due to an interaction in processing a mixture of acoustic and linguistic attributes that are differentially processed over the two hemispheres. In this study, a within-subject dichotic listening paradigm was designed, in which different levels of speech and linguistic information was incrementally included in different conditions that required the same tone identification task. A left ear advantage (LEA), in contrast with the commonly found right ear advantage (REA) in dichotic listening, was observed in the hummed tones condition, where only the slow frequency modulation of tones was included. However, when phonemic and lexical information was added in simple vowel tone conditions, the LEA became unstable. Furthermore, ear preference became balanced when phonological and lexical-semantic attributes were included in the consonant-vowel (CV), pseudo-word, and word conditions. Compared with the existing REA results that use complex vowel word tones, a complete pattern emerged gradually shifting from LEA to REA. These results support the hypothesis that an acoustic analysis of suprasegmental information of tones is preferably processed in the right hemisphere, but is influenced by phonological and lexical semantic processes residing in the left hemisphere. The ear preference in dichotic listening depends on the levels of speech and linguistic analysis and preferentially lateralizes across the different hemispheres. That is, the manifestation of functional lateralization depends on the integration of information across the two hemispheres.
Collapse
Affiliation(s)
- Ning Mei
- Basque Center on Cognition, Brain, and Language, Spain
| | - Adeen Flinker
- School of Medicine, New York University, United States
| | - Miaomiao Zhu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, China
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, China; Division of Arts and Sciences, New York University Shanghai, China.
| |
Collapse
|
21
|
Voyer D, Hearn N. Auditory semantic priming and the dichotic right ear advantage. Brain Cogn 2019; 135:103575. [PMID: 31195237 DOI: 10.1016/j.bandc.2019.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Abstract
The current study presents two experiments that aimed to explore the effects of auditory semantic priming on the dichotic right ear advantage. In Experiment 1, a classic fused dichotic words task was modified with the addition of auditory associative primes with three levels of relatedness (right, left, or neither ear). In Experiment 2, a new dichotic listening task was developed based on a binaural task used in a published auditory priming study. In both experiments, we expected that priming would produce a large right ear advantage when related to the right ear target but that the magnitude of this advantage would decrease for left ear related targets. Although evidence of priming (faster responses for related than unrelated primes) was found in both experiments, only Experiment 2 confirmed our prediction of an ear by prime relatedness interaction. Results are interpreted in the context of models concerned with the role of each cerebral hemisphere in semantic processing as well as models of perceptual asymmetries.
Collapse
Affiliation(s)
- Daniel Voyer
- Department of Psychology, University of New Brunswick, Canada.
| | - Natalie Hearn
- Department of Psychology, University of New Brunswick, Canada
| |
Collapse
|
22
|
Evidence of a Right Ear Advantage in the absence of auditory targets. Sci Rep 2018; 8:15569. [PMID: 30349021 PMCID: PMC6197268 DOI: 10.1038/s41598-018-34086-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
The Right Ear Advantage effect (REA) was explored in a white noise speech illusion paradigm: binaural white noise (WN) could be presented i) in isolation (WN condition), ii) overlapped to a voice pronouncing the vowel /a/ presented in the left ear (LE condition), iii) overlapped to a voice pronouncing the vowel /a/ presented in the right ear (RE condition). Participants were asked to report in which ear the voice has been perceived. The voice could be female or male, and it could be presented at 4 different intensities. Participants carried out the task correctly both in LE and in RE conditions. Importantly, in the WN condition the “right ear” responses were more frequent with respect to both the chance level and the “left ear” responses. A perceptual REA was confirmed both in LE and RE conditions. Moreover, when the voice was presented at low intensities (masked by WN), it was more frequently reported in the right than in the left ear (“illusory” REA). A positive correlation emerged between perceptual and illusory REA. Potential links of the REA effects with auditory hallucinations are discussed.
Collapse
|