1
|
Katsumi A, Iwata S, Tsukiura T. Roles of the Default Mode Network in Different Aspects of Self-representation When Remembering Social Autobiographical Memories. J Cogn Neurosci 2024; 36:1021-1036. [PMID: 38527069 DOI: 10.1162/jocn_a_02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Autobiographical memory (AM) is episodic memory for personally experienced events, in which self-representation is more important than that in laboratory-based memory. Theoretically, self-representation in a social context is categorized as the interpersonal self (IS) referred to in a social interaction with a person or the social-valued self (SS) based on the reputation of the self in the surrounding society. Although functional neuroimaging studies have demonstrated the involvement of the default mode network (DMN) in self-representation, little is known about how the DMN subsystems contribute differentially to IS-related and SS-related AMs. To elucidate this issue, we used fMRI to scan healthy young adults during the recollection of AMs. We performed multivariate pattern analysis (MVPA) and assessed functional connectivity in the DMN subsystems: the midline core, medial temporal lobe (MTL), and dorsomedial pFC (dmPFC) subsystems. The study yielded two main sets of findings. First, MVPA revealed that all DMN subsystems showed significant classification accuracy between IS-related and nonsocial-self-related AMs, and IS-related functional connectivity of the midline core regions with the retrosplenial cortex of the MTL subsystem and the dmPFC of the dmPFC subsystem was significant. Second, MVPA significantly distinguished between SS-related and nonsocial-self-related AMs in the midline core and dmPFC subsystems but not in the MTL subsystem, and SS-related functional connectivity with the midline core regions was significant in the temporal pole and TPJ of the dmPFC subsystem. Thus, dissociable neural mechanisms in the DMN could contribute to different aspects of self-representation in social AMs.
Collapse
Affiliation(s)
| | - Saeko Iwata
- Kyoto University
- Japan Society for the Promotion of Science
| | | |
Collapse
|
2
|
Lee SW, Kim S, Lee S, Seo HS, Cha H, Chang Y, Lee SJ. Neural mechanisms of acceptance-commitment therapy for obsessive-compulsive disorder: a resting-state and task-based fMRI study. Psychol Med 2024; 54:374-384. [PMID: 37427558 DOI: 10.1017/s0033291723001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND There is growing evidence for the use of acceptance-commitment therapy (ACT) for the treatment of obsessive-compulsive disorder (OCD). However, few fully implemented ACT have been conducted on the neural mechanisms underlying its effect on OCD. Thus, this study aimed to elucidate the neural correlates of ACT in patients with OCD using task-based and resting-state functional magnetic resonance imaging (fMRI). METHODS Patients with OCD were randomly assigned to the ACT (n = 21) or the wait-list control group (n = 21). An 8-week group-format ACT program was provided to the ACT group. All participants underwent an fMRI scan and psychological measurements before and after 8 weeks. RESULTS Patients with OCD showed significantly increased activation in the bilateral insula and superior temporal gyri (STG), induced by the thought-action fusion task after ACT intervention. Further psycho-physiological interaction analyses with these regions as seeds revealed that the left insular-left inferior frontal gyrus (IFG) connectivity was strengthened in the ACT group after treatment. Increased resting-state functional connectivity was also found in the posterior cingulate cortex (PCC), precuneus, and lingual gyrus after ACT intervention Most of these regions showed significant correlations with ACT process measures while only the right insula was correlated with the obsessive-compulsive symptom measure. CONCLUSIONS These findings suggest that the therapeutic effect of ACT on OCD may involve the salience and interoception processes (i.e. insula), multisensory integration (i.e. STG), language (i.e. IFG), and self-referential processes (i.e. PCC and precuneus). These areas or their interactions could be important for understanding how ACT works psychologically.
Collapse
Affiliation(s)
- Sang Won Lee
- Department of Psychiatry, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seungho Kim
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Sangyeol Lee
- Department of Medical & Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Ho Seok Seo
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunsil Cha
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu, Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Psychiatry, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
3
|
Stendardi D, De Luca F, Gambino S, Ciaramelli E. Retrograde amnesia abolishes the self-reference effect in anterograde memory. Exp Brain Res 2023:10.1007/s00221-023-06661-2. [PMID: 37450003 PMCID: PMC10386963 DOI: 10.1007/s00221-023-06661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Is retrograde amnesia associated with an ability to know who we are and imagine what we will be like in the future? To answer this question, we had S.G., a patient with focal retrograde amnesia following hypoxia, two brain-damaged (control) patients with no retrograde memory deficits, and healthy controls judge whether each of a series of trait adjectives was descriptive of their present self, future self, another person, and that person in the future, and later recognize studied traits among distractors. Healthy controls and control patients were more accurate in recognizing self-related compared to other-related traits, a phenomenon known as the self-reference effect (SRE). This held for both present and future self-views. By contrast, no evidence of (present or future) SRE was observed in SG, who concomitantly showed reduced certainty about his personality traits. These findings indicate that retrograde amnesia can weaken the self-schema and preclude its instantiation during self-related processing.
Collapse
Affiliation(s)
- Debora Stendardi
- Dipartimento di Psicologia, Università di Bologna, Bologna, Italy.
- Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy.
| | - Flavia De Luca
- Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy
- School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
| | - Silvia Gambino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy
| | - Elisa Ciaramelli
- Dipartimento di Psicologia, Università di Bologna, Bologna, Italy
- Centro Studi e Ricerche in Neuroscienze Cognitive, Cesena, Italy
| |
Collapse
|
4
|
Defendini A, Jenkins AC. Dissociating neural sensitivity to target identity and mental state content type during inferences about other minds. Soc Neurosci 2023; 18:103-121. [PMID: 37140093 DOI: 10.1080/17470919.2023.2208879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Predicting and inferring what other people think and feel (mentalizing) is central to social interaction. Since the discovery of the brain's "mentalizing network", fMRI studies have probed the lines along which the activity of different regions in this network converges and dissociates. Here, we use fMRI meta-analysis to aggregate across the stimuli, paradigms, and contrasts from past studies in order to definitively test two sources of possible sensitivity among brain regions of this network with particular theoretical relevance. First, it has been proposed that mentalizing processes depend on aspects of target identity (whose mind is considered), with self-projection or simulation strategies engaging disproportionately for psychologically close targets. Second, it has been proposed that mentalizing processes depend on content type (what the inference is), with inferences about epistemic mental states (e.g. beliefs and knowledge) engaging different processes than mentalizing about other types of content (e.g. emotions or preferences). Overall, evidence supports the conclusion that different mentalizing regions are sensitive to target identity and content type, respectively, but with some points of divergence from previous claims. Results point to fruitful directions for future studies, with implications for theories of mentalizing.
Collapse
|
5
|
Parelman JM, Doré BP, Cooper N, O’Donnell MB, Chan HY, Falk EB. Overlapping Functional Representations of Self- and Other-Related Thought are Separable Through Multivoxel Pattern Classification. Cereb Cortex 2022; 32:1131-1141. [PMID: 34398230 PMCID: PMC8924429 DOI: 10.1093/cercor/bhab272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Self-reflection and thinking about the thoughts and behaviors of others are important skills for humans to function in the social world. These two processes overlap in terms of the component processes involved, and share overlapping functional organizations within the human brain, in particular within the medial prefrontal cortex (MPFC). Several functional models have been proposed to explain these two processes, but none has directly explored the extent to which they are distinctly represented within different parts of the brain. This study used multivoxel pattern classification to quantify the separability of self- and other-related thought in the MPFC and expanded this question to the entire brain. Using a large-scale mega-analytic dataset, spanning three separate studies (n = 142), we find that self- and other-related thought can be reliably distinguished above chance within the MPFC, posterior cingulate cortex and temporal lobes. We highlight subcomponents of the ventral MPFC that are particularly important in representing self-related thought, and subcomponents of the orbitofrontal cortex robustly involved in representing other-related thought. Our findings indicate that representations of self- and other-related thought in the human brain are described best by a distributed pattern rather than stark localization or a purely ventral to dorsal linear gradient in the MPFC.
Collapse
Affiliation(s)
- Jacob M Parelman
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce P Doré
- Desautels Faculty of Management, McGill University, H3A 1G5, Montreal, Canada
| | - Nicole Cooper
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Hang-Yee Chan
- Amsterdam School of Communication Research, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Zamani A, Carhart-Harris R, Christoff K. Prefrontal contributions to the stability and variability of thought and conscious experience. Neuropsychopharmacology 2022; 47:329-348. [PMID: 34545195 PMCID: PMC8616944 DOI: 10.1038/s41386-021-01147-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
The human prefrontal cortex is a structurally and functionally heterogenous brain region, including multiple subregions that have been linked to different large-scale brain networks. It contributes to a broad range of mental phenomena, from goal-directed thought and executive functions to mind-wandering and psychedelic experience. Here we review what is known about the functions of different prefrontal subregions and their affiliations with large-scale brain networks to examine how they may differentially contribute to the diversity of mental phenomena associated with prefrontal function. An important dimension that distinguishes across different kinds of conscious experience is the stability or variability of mental states across time. This dimension is a central feature of two recently introduced theoretical frameworks-the dynamic framework of thought (DFT) and the relaxed beliefs under psychedelics (REBUS) model-that treat neurocognitive dynamics as central to understanding and distinguishing between different mental phenomena. Here, we bring these two frameworks together to provide a synthesis of how prefrontal subregions may differentially contribute to the stability and variability of thought and conscious experience. We close by considering future directions for this work.
Collapse
Affiliation(s)
- Andre Zamani
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada.
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| |
Collapse
|
7
|
Cervone D. Five paths to personality coherence: Integrative implications of the Knowledge-and-Appraisal Personality Architecture. EUROPEAN JOURNAL OF PERSONALITY 2021. [DOI: 10.1177/08902070211015599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The study of personality coherence can be grounded in an analysis of personality architecture, that is, the overall structure and dynamics of intra-individual personality systems. A personality architecture can identify, and organize the study of, interrelated phenomena that each are instances of personality coherence. It thereby can provide an integrative framework for understanding relations among distinct lines of research. This thesis is advanced by drawing on the Knowledge-and-Appraisal Personality Architecture, or KAPA model. KAPA model principles distinguish among three classes of social-cognitive knowledge structures: beliefs, goals, and evaluative standards. These distinctions, in turn, provide a foundation for understanding five aspects of personality coherence: 1) Belief-Based Coherence, 2) Goal-Based Coherence, 3) Evaluative Standards-Based Coherence, 4) Intra-Psychic Coherence (that is, coherent functional interrelations among personality systems), and 5) Phenomenological Coherence. Research documenting each of these five paths to personality coherence is reviewed. The paper also reviews the strengths and limitations of 20th-century social-cognitive formulations that provide key foundations for the KAPA model.
Collapse
|
8
|
Common and distinct neural systems support the generation retrieval phase of autobiographical memory and personal problem solving. Behav Brain Res 2020; 397:112911. [PMID: 32950609 DOI: 10.1016/j.bbr.2020.112911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/19/2020] [Accepted: 09/12/2020] [Indexed: 11/20/2022]
Abstract
Prior research has documented engagement of a common 'core' retrieval network during autobiographical memory retrieval and higher-order prospective tasks, such as personal problem solving. This neural overlap has overwhelmingly been documented in the context of the 'elaboration phase' of retrieval, when a single mental event is simulated in detail . However, recollective and prospective tasks are often associated with generic cues, which require the retrieval and consideration of multiple conceptually-related events. This initial 'generation phase' of retrieval has received comparably little attention in the literature, leaving open questions as to how and when autobiographical memory and prospective tasks overlap within the brain. Here, we compare and contrast neural activity between autobiographical memory retrieval and personal problem solving with a focus on the initial generation phase of retrieval. In the MRI scanner, young adults completed both an autobiographical memory and a personal problem solving task. Each task consisted of a generation phase, which required participants to generate multiple past personal events or problem solutions to a given cue and a subsequent elaboration phase, where a single memory or solution was simulated in detail. A multivariate Partial Least Squares analysis revealed patterns of neural overlap between memory and problem solving during the generation phase that were distinct from the elaboration phase. Among regions commonly recruited during the generation phase was the anterior hippocampus, a structure involved in initiating mental construction and integrating concepts. Subsequent analyses demonstrated that the anterior hippocampus interacted with distinct cortical regions as a function of task, in particular the ventromedial prefrontal cortex. Together, these data provide novel evidence that neural overlap between autobiographical memory and personal problem solving does not occur solely in the context of detailed simulation but, instead, is driven by common retrieval demands.
Collapse
|
9
|
Stawarczyk D, Bezdek MA, Zacks JM. Event Representations and Predictive Processing: The Role of the Midline Default Network Core. Top Cogn Sci 2019; 13:164-186. [PMID: 31486286 PMCID: PMC7984453 DOI: 10.1111/tops.12450] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human brain is tightly coupled to the world through its sensory‐motor systems—but it also spends a lot of its metabolism talking to itself. One important function of this intrinsic activity is the establishment and updating of event models—representations of the current situation that can predictively guide perception, learning, and action control. Here, we propose that event models largely depend on the default network (DN) midline core that includes the posterior cingulate and anterior medial prefrontal cortex. An increasing body of data indeed suggests that this subnetwork can facilitate stimuli processing during both naturalistic event comprehension and cognitive tasks in which mental representations of prior situations, trials, and task rules can predictively guide attention and performance. This midline core involvement in supporting predictions through event models can make sense of an otherwise complex and conflicting pattern of results regarding the possible cognitive functions subserved by the DN. Stawarczyk, Bezdek, and Zacks offer neuroscience evidence for a midline default network core, which appears to coordinate internal, top‐down mentation with externally‐triggered, bottom‐up attention in a push‐pull relationship. The network may enable the flexible pursuance of thoughts tuned into or detached from the current environment.
Collapse
Affiliation(s)
- David Stawarczyk
- Department of Psychological & Brain Sciences, Washington University.,Department of Psychology, Psychology and Neuroscience of Cognition Research Unit, University of Liège
| | - Matthew A Bezdek
- Department of Psychological & Brain Sciences, Washington University
| | - Jeffrey M Zacks
- Department of Psychological & Brain Sciences, Washington University
| |
Collapse
|
10
|
Sheldon S, Fenerci C, Gurguryan L. A Neurocognitive Perspective on the Forms and Functions of Autobiographical Memory Retrieval. Front Syst Neurosci 2019; 13:4. [PMID: 30760984 PMCID: PMC6361758 DOI: 10.3389/fnsys.2019.00004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Autobiographical memory retrieval involves constructing mental representations of personal past episodes by associating together an array of details related to the retrieved event. This construction process occurs flexibly so that the event details can be associated together in different ways during retrieval. Here, we propose that differences in how this association occurs support a division in autobiographical remembering. We first review theories of autobiographical memory organization that suggest that episodic details of an experience are processed along a gradient of abstraction. This organization allows for the same autobiographical event to be recalled as either a conceptualized or perceptually-based episodic memory. We then use neuroimaging evidence to show how this division within episodic autobiographical memory is also present in the brain, both at a network level and within the hippocampus. Specifically, we suggest that the anterior and posterior hippocampus are obligatorily tuned towards constructing conceptual vs. perceptual episodic representations of autobiographical memories. Finally, we discuss the directive purpose of this proposed division of episodic remembering by reviewing decision scenarios that benefit from recalling the past as a conceptual vs. a perceptual episode. Conceptual remembering is useful to guide ambiguous decisions that have yet to be encountered whereas perceptual remembering is useful to guide decisions for well-structured tasks that have been previously experienced. We emphasize that the ability to shift between conceptual and perceptual forms of remembering, by virtue of hippocampal specialization, during decision-making and other memory-guided actions is the key to adaptive behavior.
Collapse
Affiliation(s)
- Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Lauri Gurguryan
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|