1
|
Weissman B, Cohn N, Tanner D. The electrophysiology of lexical prediction of emoji and text. Neuropsychologia 2024; 198:108881. [PMID: 38579906 DOI: 10.1016/j.neuropsychologia.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/18/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
As emoji often appear naturally alongside text in utterances, they provide a way to study how prediction unfolds in multimodal sentences in direct comparison to unimodal sentences. In this experiment, participants (N = 40) read sentences in which the sentence-final noun appeared in either word form or emoji form, a between-subjects manipulation. The experiment featured both high constraint sentences and low constraint sentences to examine how the lexical processing of emoji interacts with prediction processes in sentence comprehension. Two well-established ERP components linked to lexical processing and prediction - the N400 and the Late Frontal Positivity - are investigated for sentence-final words and emoji to assess whether, to what extent, and in what linguistic contexts emoji are processed like words. Results indicate that the expected effects, namely an N400 effect to an implausible lexical item compared to a plausible one and an LFP effect to an unexpected lexical item compared to an expected one, emerged for both words and emoji. This paper discusses the similarities and differences between the stimulus types and constraint conditions, contextualized within theories of linguistic prediction, ERP components, and a multimodal lexicon.
Collapse
Affiliation(s)
- Benjamin Weissman
- Department of Cognitive Science Rensselaer Polytechnic Institute 110 8th Street, Troy, NY, 12180, USA; Department of Linguistics University of Illinois at Urbana-Champaign 707 S Mathews Ave, Urbana, IL, 61801, USA.
| | - Neil Cohn
- Department of Communication and Cognition Tilburg University PO Box 90153, 5000, LE Tilburg, the Netherlands
| | - Darren Tanner
- Department of Linguistics University of Illinois at Urbana-Champaign 707 S Mathews Ave, Urbana, IL, 61801, USA; AI For Good Lab Microsoft 1 Microsoft Way, Redmond, WA, USA
| |
Collapse
|
2
|
Murphy E, Forseth KJ, Donos C, Snyder KM, Rollo PS, Tandon N. The spatiotemporal dynamics of semantic integration in the human brain. Nat Commun 2023; 14:6336. [PMID: 37875526 PMCID: PMC10598228 DOI: 10.1038/s41467-023-42087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Language depends critically on the integration of lexical information across multiple words to derive semantic concepts. Limitations of spatiotemporal resolution have previously rendered it difficult to isolate processes involved in semantic integration. We utilized intracranial recordings in epilepsy patients (n = 58) who read written word definitions. Descriptions were either referential or non-referential to a common object. Semantically referential sentences enabled high frequency broadband gamma activation (70-150 Hz) of the inferior frontal sulcus (IFS), medial parietal cortex, orbitofrontal cortex (OFC) and medial temporal lobe in the left, language-dominant hemisphere. IFS, OFC and posterior middle temporal gyrus activity was modulated by the semantic coherence of non-referential sentences, exposing semantic effects that were independent of task-based referential status. Components of this network, alongside posterior superior temporal sulcus, were engaged for referential sentences that did not clearly reduce the lexical search space by the final word. These results indicate the existence of complementary cortical mosaics for semantic integration in posterior temporal and inferior frontal cortex.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cristian Donos
- Faculty of Physics, University of Bucharest, Măgurele, 077125, Bucharest, Romania
| | - Kathryn M Snyder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|