1
|
Van Riesen J, Shirzad M, Edgar C, Tari B, Heath M. A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure. Exp Brain Res 2024; 242:2193-2205. [PMID: 39012475 DOI: 10.1007/s00221-024-06879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
A single bout of exercise as well as exposure to a hypercapnic environment increases cerebral blood flow (CBF) and is an adaptation linked to a post-intervention executive function (EF) benefit. In the present investigation we sought to determine whether a transient reduction in CBF impairs EF. Accordingly, we employed 10-min -30 mmHg and -50 mmHg lower-body negative pressure (LBNP) interventions as well as a non-LBNP control condition. LBNP was employed because it sequesters blood in the lower legs and safely and reliably decreases CBF. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) to estimate CBF prior to and during LBNP conditions. As well, assessments of the inhibitory control component of EF (i.e., antipointing) were completed prior to (pre-) and immediately after (i.e., post-) each condition. Antipointing requires that an individual reach mirror-symmetrical to an exogenously presented target and is a task providing the resolution to detect subtle EF changes. Results showed that LBNP produced a 14% reduction in MCAv; however, null hypothesis, equivalence and Bayesian contrasts indicated that antipointing metrics did not vary from pre- to post-intervention, and LBNP-based changes in MCAv magnitude were not reliably correlated with antipointing planning times. Hence, a 10-min reduction in CBF did not impact the efficiency or effectiveness of an inhibitory control measure of EF.
Collapse
Affiliation(s)
- James Van Riesen
- Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Chloe Edgar
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, The University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada.
| |
Collapse
|
2
|
Jeyarajan G, Ayaz A, Herold F, Zou L, Heath M. A single bout of aerobic exercise does not alter inhibitory control preparatory set cerebral hemodynamics: Evidence from the antisaccade task. Brain Cogn 2024; 179:106182. [PMID: 38824809 DOI: 10.1016/j.bandc.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
A single bout of exercise improves executive function (EF) and is a benefit - in part -attributed to an exercise-mediated increase in cerebral blood flow enhancing neural efficiency. Limited work has used an event-related protocol to examine postexercise changes in preparatory phase cerebral hemodynamics for an EF task. This is salient given the neural efficiency hypothesis' assertion that improved EF is related to decreased brain activity. Here, event-related transcranial Doppler ultrasound was used to measure pro- (saccade to target) and antisaccades (saccade mirror-symmetrical target) preparatory phase middle cerebral artery velocity (MCAv) prior to and immediately after 15-min of aerobic exercise. Antisaccades produced longer reaction times (RT) and an increased preparatory phase MCAv than prosaccades - a result attributed to greater EF neural activity for antisaccades. Antisaccades selectively produced a postexercise RT reduction (ps < 0.01); however, antisaccade preparatory phase MCAv did not vary from pre- to postexercise (p=0.53) and did not correlate with the antisaccade RT benefit (p = 0.31). Accordingly, results provide no evidence that improved neural efficiency indexed via functional hyperemia is linked to a postexercise EF behavioural benefit. Instead, results support an evolving view that an EF benefit represents the additive interplay between interdependent exercise-mediated neurophysiological changes.
Collapse
Affiliation(s)
- Gianna Jeyarajan
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Azar Ayaz
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Fabian Herold
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
Cvancara DJ, Wood HA, Aboueisha M, Marshall TB, Kao TC, Phillips JO, Humphreys IM, Abuzeid WM, Lehmann AE, Kojima Y, Jafari A. Cognition and saccadic eye movement performance are impaired in chronic rhinosinusitis. Int Forum Allergy Rhinol 2024; 14:1206-1217. [PMID: 38268115 DOI: 10.1002/alr.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Patients with chronic rhinosinusitis (CRS) can experience cognitive dysfunction. The literature on this topic mostly reflects patient-reported measurements. Our goal was to assess cognitive function in patients with CRS using objective measures, including saccadic eye movements-a behavioral response reflecting cognitive and sensory information integration that is often compromised in conditions with impaired cognition. METHODS Participants (N = 24 with CRS, N = 23 non-CRS healthy controls) enrolled from rhinology clinic underwent sinonasal evaluation, quality of life assessment (Sino-nasal Outcome Test 22 [SNOT-22]), and cognitive assessment with the Neuro-QOL Cognitive Function-Short Form, the Montreal Cognitive Assessment (MoCA), and recording of eye movements using video-oculography. RESULTS Participants with CRS were more likely to report cognitive dysfunction (Neuro-QOL; 45.8% vs. 8.7%; p = 0.005) and demonstrate mild or greater cognitive impairment (MoCA; 41.7% vs. 8.7%; p = 0.005) than controls. Additionally, participants with CRS performed worse on the MoCA overall and within the executive functioning and memory domains (all p < 0.05) and on the anti-saccade (p = 0.014) and delay saccade (p = 0.044) eye movement tasks. Poorer performance on the MoCA (r = -0.422; p = 0.003) and the anti-saccade (r = -0.347; p = 0.017) and delay saccade (r = -0.419; p = 0.004) eye movement tasks correlated with worse CRS severity according to SNOT-22 scores. CONCLUSION This study is the first to utilize objective eye movement assessments in addition to researcher-administered cognitive testing in patients with CRS. These patients demonstrated a high prevalence of cognitive dysfunction, most notably within executive functioning and memory domains, with the degree of dysfunction correlating with the severity of CRS.
Collapse
Affiliation(s)
- David J Cvancara
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Heather A Wood
- Department of Engineering, University of Washington, Seattle, Washington, USA
| | - Mohamed Aboueisha
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
| | - Thomas B Marshall
- School of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Tzu-Cheg Kao
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - James O Phillips
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ashton E Lehmann
- Department of Otolaryngology-Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Yoshiko Kojima
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Mani R, Asper L, Arunachalam V, Khuu SK. The impact of traumatic brain injury on inhibitory control processes assessed using a delayed antisaccade task. Neurosci Lett 2023; 797:137081. [PMID: 36690058 DOI: 10.1016/j.neulet.2023.137081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
It has been well established that traumatic brain injury (TBI) can affect cognitive function such as attention, working memory and executive functions. In the present study, we further investigated TBI-related changes in cognitive functions by investigating the ability to reorient visuospatial attention using a modified antisaccade task. Performing an antisaccade requires disengaging attention, inhibiting a reflexive saccade, and then engaging attention to execute a voluntary saccade in a direction opposite to a peripheral target. Particularly we quantified the time (latency), and accuracy (directional and disinhibition errors) of 26 TBI and 33 normal participants in making an antisaccade after a variable period of delay (0, 0.0625, 0.125, 0.250, 0.500 or 1.0 s). Changing the delay period allowed to systematically quantify the temporal and spatial characteristics of preparing and initiating an antisaccade and whether this process is affected by TBI. TBI participants took longer (approximately 33-66 ms for variable delays) to generate correct delayed antisaccades and showed increased directional errors (2-11 % for variable delays) and increased disinhibition prosaccade errors (2-6 % for variable delays) compared to controls. However, both groups made similar disinhibition antisaccade errors. These findings indicate that TBI participants required a longer time to process information, and a possible poorer response inhibition and poor spatial information processing due to head injury.
Collapse
Affiliation(s)
- Revathy Mani
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia.
| | - Lisa Asper
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia.
| | - Valarmathi Arunachalam
- Department of Optometry, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sieu K Khuu
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Shirzad M, Tari B, Dalton C, Van Riesen J, Marsala MJ, Heath M. Passive exercise increases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology 2022; 59:e14132. [PMID: 35781673 DOI: 10.1111/psyp.14132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Executive function entails high-level cognitive control supporting activities of daily living. Literature has shown that a single-bout of exercise involving volitional muscle activation (i.e., active exercise) improves executive function and that an increase in cerebral blood flow (CBF) may contribute to this benefit. It is, however, unknown whether non-volitional exercise (i.e., passive exercise) wherein an individual's limbs are moved via an external force elicits a similar executive function benefit. This is a salient question given that proprioceptive and feedforward drive from passive exercise increases CBF independent of the metabolic demands of active exercise. Here, in a procedural validation participants (n = 2) used a cycle ergometer to complete separate 20-min active and passive (via mechanically driven flywheel) exercise conditions and a non-exercise control condition. Electromyography showed that passive exercise did not increase agonist muscle activation or increase ventilation or gas exchange variables (i.e., V̇O2 and V̇CO2 ). In a main experiment participants (n = 28) completed the same exercise and control conditions and transcranial Doppler ultrasound showed that active and passive exercise (but not the control condition) increased CBF through the middle cerebral artery (ps <.001); albeit the magnitude was less during passive exercise. Notably, antisaccade reaction times prior to and immediately after each condition showed that active (p < .001) and passive (p = .034) exercise improved an oculomotor-based measure of executive function, whereas no benefit was observed in the control condition (p = .85). Accordingly, results evince that passive exercise 'boosts' an oculomotor-based measure of executive function and supports convergent evidence that increased CBF mediates this benefit.
Collapse
Affiliation(s)
- Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - James Van Riesen
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Michael J Marsala
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Tari B, Edgar C, Persaud P, Dalton C, Heath M. The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia. Exp Brain Res 2022; 240:2061-2071. [PMID: 35727365 PMCID: PMC9211787 DOI: 10.1007/s00221-022-06394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was ‘short’ (1000–2000 ms; i.e., the timeframe used in previous work), ‘medium’ (3000–4000 ms) and ‘long’ (5000–6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps < 0.02) and two one-sided test statistics indicated that switch cost magnitudes were within an equivalence boundary (ps < 0.05). Hence, null and equivalence tests demonstrate that an antisaccade task-set inertia does not passively dissipate and represents a temporally persistent feature of oculomotor control.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Chloe Edgar
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Priyanka Persaud
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada. .,Canadian Centre for Activity and Aging, The University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada. .,Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|