1
|
Zhen S, Martinez-Saito M, Yu R. Beyond what was said: Neural computations underlying pragmatic reasoning in referential communication. Neuroimage 2025; 306:121022. [PMID: 39800172 DOI: 10.1016/j.neuroimage.2025.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025] Open
Abstract
The ability to infer a speaker's utterance within a particular context for the intended meaning is central to communication. Yet, little is known about the underlying neurocomputational mechanisms of pragmatic inference, let alone relevant differences among individuals. Here, using a reference game combined with model-based functional magnetic resonance imaging (fMRI), we showed that an individual-level pragmatic inference model was a better predictor of listeners' performance than a population-level model. Our fMRI results showed that Bayesian posterior probability was positively correlated with activity in the ventromedial prefrontal cortex (vmPFC) and ventral striatum and negatively correlated with activity in dorsomedial PFC, anterior insula (AI), and inferior frontal gyrus (IFG). Importantly, individual differences in higher-order reasoning were correlated with stronger activation in IFG and AI and positively modulated the vmPFC functional connectivity with AI. Our findings provide a preliminary neurocomputational account of how the brain represents Bayesian belief inferences and the neural basis of heterogeneity in such reasoning.
Collapse
Affiliation(s)
- Shanshan Zhen
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China.
| | | | - Rongjun Yu
- Academy of Wellness and Human Development, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
2
|
Perkins SC, Shaun Ho S, Evans GW, Liberzon I, Gopang M, Swain JE. Language processing following childhood poverty: Evidence for disrupted neural networks. BRAIN AND LANGUAGE 2024; 252:105414. [PMID: 38640643 DOI: 10.1016/j.bandl.2024.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Childhood poverty is related to deficits in multiple cognitive domains including adult language function. It is unknown if the brain basis of language is disrupted in adults with childhood poverty backgrounds, controlling for current functioning. Fifty-one adults (age 24) from an existing longitudinal study of childhood poverty, beginning at age 9, were examined on behavioral phonological awareness (LP) and completed an event-related fMRI speech/print processing LP task. Adults from childhood poverty backgrounds exhibited lower LP in adulthood. The middle-income group exhibited greater activation of the bilateral IFG and hippocampus during language processing. In psychophysiological interaction (PPI) analyses, the childhood poverty group exhibited greater coupling between ventral Broca's and the middle temporal gyrus (MTG) as well as coupling between Wernicke's region and bilateralization. Childhood poverty disrupts language processing neural networks in adulthood, after controlling for LP, suggesting that poverty in childhood influences the neurophysiological basis for language processing into adulthood.
Collapse
Affiliation(s)
- Suzanne C Perkins
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, United States.
| | - S Shaun Ho
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| | - Gary W Evans
- Departments of Human Centered Design and Psychology, Cornell University, Ithaca, NY 14853-4401, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX 77802, United States
| | - Meroona Gopang
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States; Program in Public Health, Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States; Psychology, Obstetrics, Gynecology & Reproductive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| |
Collapse
|
3
|
Lyu 吕奕洲 Y, Su 苏紫杉 Z, Neumann D, Meidenbauer KL, Leong 梁元彰 YC. Hostile Attribution Bias Shapes Neural Synchrony in the Left Ventromedial Prefrontal Cortex during Ambiguous Social Narratives. J Neurosci 2024; 44:e1252232024. [PMID: 38316561 PMCID: PMC10904091 DOI: 10.1523/jneurosci.1252-23.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.
Collapse
Affiliation(s)
- Yizhou Lyu 吕奕洲
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Zishan Su 苏紫杉
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Dawn Neumann
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | | | - Yuan Chang Leong 梁元彰
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
- Neuroscience Institute, The University of Chicago, Chicago 60637, Illinois
| |
Collapse
|
4
|
Ohad T, Yeshurun Y. Neural synchronization as a function of engagement with the narrative. Neuroimage 2023; 276:120215. [PMID: 37269956 DOI: 10.1016/j.neuroimage.2023.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
We can all agree that a good story engages us, however, agreeing which story is good is far more debatable. In this study, we explored whether engagement with a narrative synchronizes listeners' brain responses, by examining individual differences in engagement to the same story. To do so, we pre-registered and re-analyzed a previously collected dataset by Chang et al. (2021) of functional Magnetic Resonance Imaging (fMRI) scans of 25 participants who listened to a one-hour story and answered questionnaires. We assessed the degree of their overall engagement with the story and their engagement with the main characters. The questionnaires revealed individual differences in engagement with the story, as well as different valence towards specific characters. Neuroimaging data showed that the auditory cortex, the default mode network (DMN) and language regions were involved in processing the story. Increased engagement with the story was correlated with increased neural synchronization within regions in the DMN (especially the medial prefrontal cortex), as well as regions outside the DMN such as the dorso-lateral prefrontal cortex and the reward system. Interestingly, positively and negatively engaging characters elicited different patterns of neural synchronization. Finally, engagement increased functional connectivity within and between the DMN, the ventral attention network and the control network. Taken together, these findings suggest that engagement with a narrative synchronizes listeners' responses in regions involved in mentalizing, reward, working memory and attention. By examining individual differences in engagement, we revealed that these synchronization patterns are due to engagement, and not due to differences in the narrative's content.
Collapse
Affiliation(s)
- Tal Ohad
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Yaara Yeshurun
- Sagol School of Neuroscience, Tel-Aviv University, Israel; School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
5
|
Corpus callosum organization and its implication to core and co-occurring symptoms of Autism Spectrum Disorder. Brain Struct Funct 2023; 228:775-785. [PMID: 36867240 DOI: 10.1007/s00429-023-02617-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Autism Spectrum Disorder (ASD) is characterized by social interaction and communication deficits, repetitive behavior and often by co-occurring conditions such as language and non-verbal IQ development delays. Previous studies reported that those behavioral abnormalities can be associated with corpus callosum organization. However, little is known about the specific differences in white matter structure of the corpus callosum parts in children with ASD and TD peers and their relationships to core and co-occurring symptoms of ASD. The aim of the study was to investigate the volumetric and microstructural characteristics of the corpus callosum parts crucially involved in social, language, and non-verbal IQ behavior in primary-school-aged children with ASD and to assess the relationships between these characteristics and behavioral measures. 38 children (19 with ASD and 19 typically developing (TD) controls) were scanned using diffusion-weighted MRI and assessed with behavioral tests. The tractography of the corpus callosum parts were performed using Quantitative Imaging Toolkit software; diffusivity and volumetric measurements were extracted for the analysis. In the ASD group, fractional anisotropy (FA) was decreased across the supplementary motor area and the ventromedial prefrontal cortex, and axial diffusivity (AD) was reduced across each of the corpus callosum parts in comparison to the TD group. Importantly, the AD decrease was related to worse language skills and more severe autistic traits in individuals with ASD. The microstructure of the corpus callosum parts differs between children with and without ASD. Abnormalities in white matter organization of the corpus callosum parts are associated with core and co-occurring symptoms of ASD.
Collapse
|
6
|
Gidron Y, Caton L, Reich M. Stress, Inflammation and Cancer Prognosis: New Evidence-Based Effective Treatments. PSYCHO-ONCOLOGIE 2020. [DOI: 10.3166/pson-2019-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article introduces the general model of stress, coping and adaptation applied to cancer, and biological mechanisms mediating psychological factors and cancer prognosis. The role of the vagus nerve as a possible bridge and therapeutic target in psycho-oncology is reviewed. Finally, the effects of brief psychological interventions (e.g., stress management) on cancer prognosis are presented. Psycho-oncology education and practice need to shift to a more evidence-based proactive approach, to help cancer patients adapt and possibly improve their quality and quantity of life.
Collapse
|
7
|
Yu LQ, Kan IP, Kable JW. Beyond a rod through the skull: A systematic review of lesion studies of the human ventromedial frontal lobe. Cogn Neuropsychol 2019; 37:97-141. [PMID: 31739752 DOI: 10.1080/02643294.2019.1690981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropsychological studies from the past century have associated damage to the ventromedial frontal lobes (VMF) with impairments in a variety of domains, including memory, executive function, emotion, social cognition, and valuation. A central question in the literature is whether these seemingly distinct functions are subserved by different sub-regions within the VMF, or whether VMF supports a broader cognitive process that is crucial to these varied domains. In this comprehensive review of the neuropsychological literature from the last two decades, we present a qualitative synthesis of 184 papers that have examined the psychological impairments that result from VMF damage. We discuss these findings in the context of several theoretical frameworks and advocate for the view that VMF is critical for the formation and representation of schema and cognitive maps.
Collapse
Affiliation(s)
- Linda Q Yu
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Irene P Kan
- Department of Psychological & Brain Sciences, Villanova University, Villanova, PA, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Lieberman MD, Straccia MA, Meyer ML, Du M, Tan KM. Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neurosci Biobehav Rev 2019; 99:311-328. [PMID: 30610911 DOI: 10.1016/j.neubiorev.2018.12.021] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
The medial prefrontal cortex (MPFC) has been posited to serve a variety of social, affective, and cognitive functions. These conclusions have largely been driven by forward inference analyses (e.g. GLM fMRI studies and meta-analyses) that indicate where domain-specific tasks tend to produce activity but tell us little about what those regions do. Here, we take a multi-method, multi-domain approach to the functionality of MPFC subdivisions within Brodmann areas 9-11. We consider four methods that each have reverse inference or causal inference value: lesion work, transcranial magnetic stimulation, multivariate pattern analysis, and Neurosynth analyses. The Neurosynth analyses include multi-term reverse inference analyses that compare several domains of interest to one another at once. We examine the evidence supporting structure-function links in five domains: social cognition, self, value, emotional experience, and mental time travel. The evidence is considered for each of three MPFC subdivisions: dorsomedial prefrontal cortex (DMPFC), anteromedial prefrontal cortex (AMPFC), and ventromedial prefrontal cortex (VMPFC). Although there is evidentiary variability across methods, the results suggest that social processes are functionally linked to DMPFC (and somewhat surprisingly in VMPFC), self processes are linked to AMPFC, and affective processes are linked to AMPFC and VMPFC. There is also a relatively non-selective region of VMPFC that may support situational processing, a process key to each domain, but also independent of each.
Collapse
Affiliation(s)
- Matthew D Lieberman
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States.
| | - Mark A Straccia
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Meng Du
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| | - Kevin M Tan
- UCLA Psychology Department, 1248 Franz Hall, Los Angeles, CA, 90095-1563, United States
| |
Collapse
|
9
|
Ventromedial Prefrontal Cortex Is Necessary for Normal Associative Inference and Memory Integration. J Neurosci 2018; 38:3767-3775. [PMID: 29555854 DOI: 10.1523/jneurosci.2501-17.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to flexibly combine existing knowledge in response to novel circumstances is highly adaptive. However, the neural correlates of flexible associative inference are not well characterized. Laboratory tests of associative inference have measured memory for overlapping pairs of studied items (e.g., AB, BC) and for nonstudied pairs with common associates (i.e., AC). Findings from functional neuroimaging and neuropsychology suggest the ventromedial prefrontal cortex (vmPFC) may be necessary for associative inference. Here, we used a neuropsychological approach to test the necessity of vmPFC for successful memory-guided associative inference in humans using an overlapping pairs associative memory task. We predicted that individuals with focal vmPFC damage (n = 5; 3F, 2M) would show impaired inferential memory but intact non-inferential memory. Performance was compared with normal comparison participants (n = 10; 6F, 4M). Participants studied pairs of visually presented objects including overlapping pairs (AB, BC) and nonoverlapping pairs (XY). Participants later completed a three-alternative forced-choice recognition task for studied pairs (AB, BC, XY) and inference pairs (AC). As predicted, the vmPFC group had intact memory for studied pairs but significantly impaired memory for inferential pairs. These results are consistent with the perspective that the vmPFC is necessary for memory-guided associative inference, indicating that the vmPFC is critical for adaptive abilities that require application of existing knowledge to novel circumstances. Additionally, vmPFC damage was associated with unexpectedly reduced memory for AB pairs post-inference, which could potentially reflect retroactive interference. Together, these results reinforce an emerging understanding of a role for the vmPFC in brain networks supporting associative memory processes.SIGNIFICANCE STATEMENT We live in a constantly changing environment, so the ability to adapt our knowledge to support understanding of new circumstances is essential. One important adaptive ability is associative inference which allows us to extract shared features from distinct experiences and relate them. For example, if we see a woman holding a baby, and later see a man holding the same baby, then we might infer that the two adults are a couple. Despite the importance of associative inference, the brain systems necessary for this ability are not known. Here, we report that damage to human ventromedial prefrontal cortex (vmPFC) disproportionately impairs associative inference. Our findings show the necessity of the vmPFC for normal associative inference and memory integration.
Collapse
|
10
|
Liu ZX, Grady C, Moscovitch M. Effects of Prior-Knowledge on Brain Activation and Connectivity During Associative Memory Encoding. Cereb Cortex 2017; 27:1991-2009. [PMID: 26941384 DOI: 10.1093/cercor/bhw047] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forming new associations is a fundamental process of building our knowledge system. At the brain level, how prior-knowledge influences acquisition of novel associations has not been thoroughly investigated. Based on recent cognitive neuroscience literature on multiple-component memory processing, we hypothesize that prior-knowledge triggers additional evaluative, semantic, or episodic-binding processes, mainly supported by the ventromedial prefrontal cortex (vmPFC), anterior temporal pole (aTPL), and hippocampus (HPC), to facilitate new memory encoding. To test this hypothesis, we scanned 20 human participants with functional magnetic resonance imaging (fMRI) while they associated novel houses with famous or nonfamous faces. Behaviorally, we found beneficial effects of prior-knowledge on associative memory. At the brain level, we found that the vmPFC and HPC, as well as the parahippocampal place area (PPA) and fusiform face area, showed stronger activation when famous faces were involved. The vmPFC, aTPL, HPC, and PPA also exhibited stronger activation when famous faces elicited stronger emotions and memories, and when associations were later recollected. Connectivity analyses also suggested that HPC connectivity with the vmPFC plays a more important role in the famous than nonfamous condition. Taken together, our results suggest that prior-knowledge facilitates new associative encoding by recruiting additional perceptual, evaluative, or associative binding processes.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Rotman Research Institute, Baycrest Center.,Applied Psychology and Human Development, OISE
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Center.,Department of Psychology.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Center.,Department of Psychology
| |
Collapse
|
11
|
Wszalek J. Ethical and Legal Concerns Associated With the Comprehension of Legal Language and Concepts. AJOB Neurosci 2017; 8:26-36. [PMID: 30918742 DOI: 10.1080/21507740.2017.1285821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Because numerous standards and ethics rules underscore the importance of language and communication within the legal process, the inability to successfully comprehend legal language is a pressing concern, particularly because many populations that are overrepresented within legal systems typically show problems with language and communication. In order to better describe the nexus between language comprehension and the law, therefore, I identify four hierarchical aspects of legal language and concepts that may challenge the language-comprehension processes and impede comprehension: (1) the challenge to "lower level" cognitive functions; (2) the demand for inferences; (3) the need for complex situation models; and (4) the idiosyncratic nature of legal language's text "genre." Using common examples of black-letter law, I examine how these four aspects might create legal problems and ethical concerns for both the adjudicated individual and the representing attorney. This analysis should be a valuable first step in allowing the neurolaw and bioethics fields to better identify and research these important ethical dilemmas.
Collapse
|
12
|
Pavias M, van den Broek P, Hickendorff M, Beker K, Van Leijenhorst L. Effects of Social-Cognitive Processing Demands and Structural Importance on Narrative Recall: Differences Between Children, Adolescents, and Adults. DISCOURSE PROCESSES 2016. [DOI: 10.1080/0163853x.2016.1171070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Neural substrates of spontaneous narrative production in focal neurodegenerative disease. Neuropsychologia 2015; 79:158-71. [PMID: 26485159 DOI: 10.1016/j.neuropsychologia.2015.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022]
Abstract
Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention.
Collapse
|
14
|
Beyond the word and image: characteristics of a common meaning system for language and vision revealed by functional and structural imaging. Neuroimage 2015; 106:72-85. [DOI: 10.1016/j.neuroimage.2014.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022] Open
|