1
|
Chair SY, Chow KM, Chan CWL, Chan JYW, Law BMH, Waye MMY. Structural Variations Identified in Patients with Autism Spectrum Disorder (ASD) in the Chinese Population: A Systematic Review of Case-Control Studies. Genes (Basel) 2024; 15:1082. [PMID: 39202440 PMCID: PMC11353326 DOI: 10.3390/genes15081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disability characterised by the impairment of social interaction and communication ability. The alarming increase in its prevalence in children urged researchers to obtain a better understanding of the causes of this disease. Genetic factors are considered to be crucial, as ASD has a tendency to run in families. In recent years, with technological advances, the importance of structural variations (SVs) in ASD began to emerge. Most of these studies, however, focus on the Caucasian population. As a populated ethnicity, ASD shall be a significant health issue in China. This systematic review aims to summarise current case-control studies of SVs associated with ASD in the Chinese population. A list of genes identified in the nine included studies is provided. It also reveals that similar research focusing on other genetic backgrounds is demanded to manifest the disease etiology in different ethnic groups, and assist the development of accurate ethnic-oriented genetic diagnosis.
Collapse
Affiliation(s)
- Sek-Ying Chair
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cecilia Wai-Ling Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Judy Yuet-Wa Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Bernard Man-Hin Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
| | - Mary Miu-Yee Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.-M.C.); (C.W.-L.C.); (J.Y.-W.C.); (B.M.-H.L.); (M.M.-Y.W.)
- Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Croucher Laboratory for Human Genomics, The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Ross LA, Molholm S, Butler JS, Del Bene VA, Brima T, Foxe JJ. Neural correlates of audiovisual narrative speech perception in children and adults on the autism spectrum: A functional magnetic resonance imaging study. Autism Res 2024; 17:280-310. [PMID: 38334251 DOI: 10.1002/aur.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
Autistic individuals show substantially reduced benefit from observing visual articulations during audiovisual speech perception, a multisensory integration deficit that is particularly relevant to social communication. This has mostly been studied using simple syllabic or word-level stimuli and it remains unclear how altered lower-level multisensory integration translates to the processing of more complex natural multisensory stimulus environments in autism. Here, functional neuroimaging was used to examine neural correlates of audiovisual gain (AV-gain) in 41 autistic individuals to those of 41 age-matched non-autistic controls when presented with a complex audiovisual narrative. Participants were presented with continuous narration of a story in auditory-alone, visual-alone, and both synchronous and asynchronous audiovisual speech conditions. We hypothesized that previously identified differences in audiovisual speech processing in autism would be characterized by activation differences in brain regions well known to be associated with audiovisual enhancement in neurotypicals. However, our results did not provide evidence for altered processing of auditory alone, visual alone, audiovisual conditions or AV- gain in regions associated with the respective task when comparing activation patterns between groups. Instead, we found that autistic individuals responded with higher activations in mostly frontal regions where the activation to the experimental conditions was below baseline (de-activations) in the control group. These frontal effects were observed in both unisensory and audiovisual conditions, suggesting that these altered activations were not specific to multisensory processing but reflective of more general mechanisms such as an altered disengagement of Default Mode Network processes during the observation of the language stimulus across conditions.
Collapse
Affiliation(s)
- Lars A Ross
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Imaging Sciences, University of Rochester Medical Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| | - John S Butler
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
- School of Mathematics and Statistics, Technological University Dublin, City Campus, Dublin, Ireland
| | - Victor A Del Bene
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
- Heersink School of Medicine, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tufikameni Brima
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
3
|
Association between Genetic Variants in DUSP15, CNTNAP2, and PCDHA Genes and Risk of Childhood Autism Spectrum Disorder. Behav Neurol 2021; 2021:4150926. [PMID: 34257739 PMCID: PMC8261179 DOI: 10.1155/2021/4150926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Genetic factors play an important role in the development of autism spectrum disorder (ASD). This case-control study was to determine the association between childhood ASD and single nucleotide polymorphisms (SNPs) rs3746599 in the DUSP15 gene, rs7794745 in the CNTNAP2 gene, and rs251379 in the PCDHA gene in a Chinese Han population. Methods Genotypes of SNPs were examined in DNA extracted from blood cells from 201 children with ASD and 200 healthy controls. The Children Autism Rating Scale (CARS) was applied to evaluate the severity of the disease and language impairment. The relationship between SNPs and the risk of ASD or the severity of the disease was determined by logistic regression and one-way ANOVA. Results The genotype G/G of rs3746599 in the DUSP15 gene was significantly associated with a decreased risk of ASD (odds ratio (OR) = 0.65, 95% confidence interval (CI): 0.42-0.99, P = 0.0449). The T allele of rs7794745 in the CNTNAP2 gene was associated with an increased risk of ASD (OR = 1.34, 95% CI: 1.01-1.77, P = 0.0435). The SNP rs251379 was not associated with ASD. Though none of the SNPs examined were associated with ASD severity, rs7794745 was associated with severity of language impairment. Conclusions Our findings suggest that both rs3746599 in the DUSP15 gene and rs7794745 in the CNTNAP2 gene are associated with risk of childhood ASD, and rs7794745 is also related to the severity of language impairment in autistic children from a Chinese Han population.
Collapse
|
4
|
Liu YX, Li B, Wu KR, Tang LY, Lin Q, Li QH, Yuan Q, Shi WQ, Liang RB, Ge QM, Shao Y. Altered white matter integrity in patients with monocular blindness: A diffusion tensor imaging and tract-based spatial statistics study. Brain Behav 2020; 10:e01720. [PMID: 32558355 PMCID: PMC7428480 DOI: 10.1002/brb3.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Visual deprivation can lead to abnormal and plastic changes in the brain's visual system and other systems. Although the secondary changes of gray matter in patients have been well studied, the study of white matter is rare. In fact, subtle changes in white matter may be revealed by diffusion tensor imaging, and tract-based spatial statistics can be used to analyze DTI image data. PURPOSE In the present study, diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) were used to investigate abnormal structural changes in the white matter (WM) of patients with monocular blindness (MB). METHODS We recruited 16 healthy controls (HC) (fourteen males and two females) and 16 patients (fifteen males and one female) with right-eye blindness (without differences in left-eye vision). All patients were of similar age. Data acquisition was performed using magnetic resonance imaging (MRI) and DTI. Voxel-based whole brain comparisons of fractional anisotropy (FA) and radial diffusivity (RD) of WM fibers in patients and HC were performed using the TBSS method. The mean FA and RD values for altered brain regions in MB patients were analyzed via the receiver operating characteristic (ROC) curve. Correlation analysis was performed to investigate the relationships between the average FA (RD) value of the whole brain and anxiety score, depression score, and visual function questionnaire score in MB patients. RESULTS In MB patients, the mean FA of the whole brain was decreased versus HC. Moreover, the FA values of the corpus callosum, the corona radiata, the posterior thalamic radiation, and the right retrolenticular part of internal capsule were significantly decreased. In addition, the average RD value of the whole brain in MB patients was higher than that observed in HC. The mean FA and RD values of brain regions were analyzed using the ROC curve, and the results showed that the area under the ROC curve was more accurate. Furthermore, the average FA and RD values of the whole brain were significantly correlated with anxiety score, depression score, and visual function-related quality of life score. CONCLUSION DTI and TBSS may be useful in examining abnormal spontaneous alterations in the WM of MB patients. The observed changes in FA and RD values may imply the larvaceous neurological mechanism involved in MB.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kang-Rui Wu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ying Tang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Qi Lin
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hai Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Yuan
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Wang Z, Zhang T, Liu J, Wang H, Lu T, Jia M, Zhang D, Wang L, Li J. Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry 2019; 19:159. [PMID: 31122238 PMCID: PMC6533675 DOI: 10.1186/s12888-019-2144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/06/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism is a complex neurodevelopmental disorder with high heritability. Zinc finger protein 804A (ZNF804A) was suggested to play important roles in neurodevelopment. Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia and might influence social interaction. Only one study explored the significance of ZNF804A polymorphisms in autism, which discovered that rs7603001 was nominally associated with autism. Moreover, no previous study investigated the association between ZNF804A and autism in a Han Chinese population. Here, we investigated whether these two SNPs (rs1344706 and rs7603001) in ZNF804A contribute to the risk of autism in a Han Chinese population. METHODS We performed a family-based association study in 640 Han Chinese autism trios. Sanger sequencing was used for sample genotyping. Then, single marker association analyses were conducted using the family-based association test (FBAT) program. RESULTS No significant association was found between the two SNPs (rs1344706 and rs7603001) in ZNF804A and autism (P > 0.05). CONCLUSIONS Our findings suggested that rs1344706 and rs7603001 in ZNF804A might not be associated with autism in a Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tian Zhang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jing Liu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Han Wang
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Tianlan Lu
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Meixiang Jia
- 0000 0004 1798 0615grid.459847.3Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37Peking University Institute of Mental Health, Beijing, 100191 China ,0000 0001 2256 9319grid.11135.37NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191 China ,0000 0004 1798 0615grid.459847.3National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Dai Zhang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Lifang Wang
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Jun Li
- Peking University Sixth Hospital, No. 51, Hua Yuan Bei Road, Beijing, 100191, China. .,Peking University Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
6
|
Paul S, Mukherjee S, Bhattacharyya S. Network organization of co-opetitive genetic influences on morphologies of the human cerebral cortex. J Neural Eng 2019; 16:026028. [PMID: 30654334 DOI: 10.1088/1741-2552/aaff85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The brain can be represented as a network, where anatomical regions are nodes and relations between regions are edges. Within a network, the co-existence of co-operative and competitive relationships between different nodes is called co-opetition. Inter-regional genetic influences on morphological phenotypes (thickness, surface area) of the cerebral cortex display such co-opetitive relationships. However, whether these co-operative and competitive genetic influences are organized similarly has remained elusive. How the collective organization of the co-operative and competitive genetic influences is related to the inter-individual variations of cortical morphological phenotypes has also remained unexplored. APPROACH We constructed inter-regional genetic influence networks underlying the morphologies (thickness, surface area) of the human cerebral cortex combining the T1 weighted MRI of genetically confirmed 593 siblings and twin-study design. Graph theory was used to characterize the genetic influence networks and the collective organizations of genetic influences were characterized using the theory of structural balance. Principal component (PC) analysis was used to estimate the principal modes of morphological phenotype variations. MAIN RESULTS The inter-regional co-operative genetic influences are assortative, while competitive influences are disassortative. Co-operative genetic influences are more cohesive and less diverse than the competitive influences. The collective organization of co-opetitive genetic influences partially explains the fifth principal modes of inter-individual variation of cortical morphological phenotypes. Other principal modes were not significantly associated with collective genetic influences. SIGNIFICANCE Our study furnishes fundamental insight regarding the organization of co-opetitive genetic influences underlying the morphologies of the human cerebral cortex. In future studies, investigation of the alterations of co-opetitive genetic network properties in brain disorders may furnish disorder-specific insight that may be associated with the disease state or lead to vulnerability to those conditions.
Collapse
Affiliation(s)
- Subhadip Paul
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | | | | |
Collapse
|
7
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|