1
|
Reduction in right lateralized N2 error response to stroke order violations in poor Chinese word spellers: A study on event-related potential markers for Chinese reading and spelling. J Exp Child Psychol 2023; 229:105625. [PMID: 36701933 DOI: 10.1016/j.jecp.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
Abstract
Stroke order knowledge is critical for Chinese reading and spelling acquisition. Previous studies have demonstrated enhancements of the N2 and P3 event-related potential (ERP) components at the Pz electrode to stroke order violations of Chinese characters in younger adults. However, it remained unclear whether similar ERP responses could be found in children. The current study investigated the ERP responses to stroke order violations of Chinese characters in children and examined the associations of the ERP responses with children's Chinese reading and spelling performance. A total of 26 Grade 2 Hong Kong Chinese children observed stroke-by-stroke displays of Chinese characters and judged whether the Chinese characters were written in the correct order. The ERP results showed larger anterior N2 and posterior P3 at the midline electrodes to the incorrect strokes than to the correct strokes. In addition, a smaller right lateralized temporal N2 response to the incorrect strokes was found in poor spellers as compared with good spellers of Chinese. The effect of the right lateralized temporal N2 response on reading performance was fully mediated through spelling ability. These results demonstrated increases in the anterior N2 and posterior P3 responses to stroke order violation of Chinese characters in second graders and suggest the right lateralized N2 response as a potential neural marker of Chinese literacy development in children.
Collapse
|
2
|
Gallego-Molina NJ, Ortiz A, Martínez-Murcia FJ, Formoso MA, Giménez A. Complex network modeling of EEG band coupling in dyslexia: An exploratory analysis of auditory processing and diagnosis. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.108098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Lai K, Liu J, Wang J, Zheng Y, Liang M, Wang S. Resting-state EEG reveals global network deficiency in prelingually deaf children with late cochlear implantation. Front Pediatr 2022; 10:909069. [PMID: 36147821 PMCID: PMC9487891 DOI: 10.3389/fped.2022.909069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
There are individual differences in rehabilitation after cochlear implantation that can be explained by brain plasticity. However, from the perspective of brain networks, the effect of implantation age on brain plasticity is unclear. The present study investigated electroencephalography functional networks in the resting state, including eyes-closed and eyes-open conditions, in 31 children with early cochlear implantation, 24 children with late cochlear implantation, and 29 children with normal hearing. Resting-state functional connectivity was measured with phase lag index, and we investigated the connectivity between the sensory regions for each frequency band. Network topology was examined using minimum spanning tree to obtain the network backbone characteristics. The results showed stronger connectivity between auditory and visual regions but reduced global network efficiency in children with late cochlear implantation in the theta and alpha bands. Significant correlations were observed between functional backbone characteristics and speech perception scores in children with cochlear implantation. Collectively, these results reveal an important effect of implantation age on the extent of brain plasticity from a network perspective and indicate that characteristics of the brain network can reflect the extent of rehabilitation of children with cochlear implantation.
Collapse
Affiliation(s)
- Kaiying Lai
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Jiahao Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
4
|
Fraga-González G, Smit DJA, Van der Molen MJW, Tijms J, Stam CJ, de Geus EJC, Van der Molen MW. Graph Analysis of EEG Functional Connectivity Networks During a Letter-Speech Sound Binding Task in Adult Dyslexics. Front Psychol 2021; 12:767839. [PMID: 34899515 PMCID: PMC8658451 DOI: 10.3389/fpsyg.2021.767839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
We performed an EEG graph analysis on data from 31 typical readers (22.27 ± 2.53 y/o) and 24 dyslexics (22.99 ± 2.29 y/o), recorded while they were engaged in an audiovisual task and during resting-state. The task simulates reading acquisition as participants learned new letter-sound mappings via feedback. EEG data was filtered for the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. We computed the Phase Lag Index (PLI) to provide an estimate of the functional connectivity between all pairs of electrodes per band. Then, networks were constructed using a Minimum Spanning Tree (MST), a unique sub-graph connecting all nodes (electrodes) without loops, aimed at minimizing bias in between groups and conditions comparisons. Both groups showed a comparable accuracy increase during task blocks, indicating that they correctly learned the new associations. The EEG results revealed lower task-specific theta connectivity, and lower theta degree correlation over both rest and task recordings, indicating less network integration in dyslexics compared to typical readers. This pattern suggests a role of theta oscillations in dyslexia and may reflect differences in task engagement between the groups, although robust correlations between MST metrics and performance indices were lacking.
Collapse
Affiliation(s)
- Gorka Fraga-González
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Rudolf Berlin Center, Amsterdam, Netherlands.,Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Dirk J A Smit
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands.,Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Melle J W Van der Molen
- Institute of Psychology, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Jurgen Tijms
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Rudolf Berlin Center, Amsterdam, Netherlands.,RID Institute, Amsterdam, Netherlands
| | - Cornelis J Stam
- Department of Clinical Neuropsychology and MEG Center, VU University Medical Center, Amsterdam, Netherlands
| | - Eco J C de Geus
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands.,Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Maurits W Van der Molen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|