1
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
2
|
Qian P, Swainsbury DJK, Croll TI, Castro-Hartmann P, Divitini G, Sader K, Hunter CN. Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å. Biochemistry 2021; 60:3302-3314. [PMID: 34699186 PMCID: PMC8775250 DOI: 10.1021/acs.biochem.1c00576] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Light-harvesting 2 (LH2) antenna
complexes augment the collection
of solar energy in many phototrophic bacteria. Despite its frequent
role as a model for such complexes, there has been no three-dimensional
(3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy
(cryo-EM) to determine the 2.1 Å resolution structure of this
LH2 antenna, which is a cylindrical assembly of nine αβ
heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution
of this structure reveals all of the interpigment and pigment–protein
interactions that promote the assembly and energy-transfer properties
of this complex. Near the cytoplasmic face of the complex there is
a ring of nine BChls, which absorb maximally at 800 nm and are designated
as B800; each B800 is coordinated by the N-terminal carboxymethionine
of LH2-α, part of a network of interactions with nearby residues
on both LH2-α and LH2-β and with the carotenoid. Nine
carotenoids, which are spheroidene in the strain we analyzed, snake
through the complex, traversing the membrane and interacting with
a ring of 18 BChls situated toward the periplasmic side of the complex.
Hydrogen bonds with C-terminal aromatic residues modify the absorption
of these pigments, which are red-shifted to 850 nm. Overlaps between
the macrocycles of the B850 BChls ensure rapid transfer of excitation
energy around this ring of pigments, which act as the donors of energy
to neighboring LH2 and reaction center light-harvesting 1 (RC–LH1)
complexes.
Collapse
Affiliation(s)
- Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
3
|
Moon G, Lee JH. Environmentally sustainable color-switchable alignment layer formed by nanoscale interfacial self-assembly of chlorophyll biomolecules. SOFT MATTER 2021; 17:1834-1841. [PMID: 33399616 DOI: 10.1039/d0sm01900c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The precise alignment of liquid crystals (LCs) is crucial in the fabrication of LC devices because this arrangement can determine the performance of optoelectronic devices. Conventionally, LC alignment is achieved using a thin layer of elaborate polyimide materials. However, these materials require not only complicated synthetic processes using significant amounts of toxic chemicals, but also a time-consuming high-temperature curing process involving a long period of energy consumption. Thus, the development of environmentally sustainable alignment materials is a fundamental way to conserve energy and reduce the use of hazardous substances. Herein, we present an environmentally sustainable strategy to fabricate a functional vertical alignment layer for nematic LCs through interfacial self-assembly of chlorophyll biomolecules. A novel functional alignment layer was prepared using a simple and environmentally-friendly approach by doping chlorophyll extracted from plants, which are abundant in nature, into LC medium. It has been experimentally proven that amphiphilic chlorophyll biomolecules were self-assembled on the indium tin oxide surface through hydrogen bonding between a porphyrin ring and hydroxyl group, and therefore the stable homeotropic alignment of LC was achieved through the van der Waals interaction between the hydrocarbon tail and LC molecule. In addition, the nanoscale self-assembled alignment layer of chlorophyll molecules exhibited color-switchable behavior under visible and ultraviolet light. This simple and eco-friendly approach provided excellent electro-optical properties comparable to those of a commercial polyimide layer, while achieving a very stable and cost-effective vertical alignment layer capable of color switching.
Collapse
Affiliation(s)
- Gitae Moon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Jun Hyup Lee
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea.
| |
Collapse
|
4
|
Llansola-Portoles MJ, Li F, Xu P, Streckaite S, Ilioaia C, Yang C, Gall A, Pascal AA, Croce R, Robert B. Tuning antenna function through hydrogen bonds to chlorophyll a. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148078. [PMID: 31476286 DOI: 10.1016/j.bbabio.2019.148078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
We describe a molecular mechanism tuning the functional properties of chlorophyll a (Chl-a) molecules in photosynthetic antenna proteins. Light-harvesting complexes from photosystem II in higher plants - specifically LHCII purified with α- or β-dodecyl-maltoside, along with CP29 - were probed by low-temperature absorption and resonance Raman spectroscopies. We show that hydrogen bonding to the conjugated keto carbonyl group of protein-bound Chl-a tunes the energy of its Soret and Qy absorption transitions, inducing red-shifts that are proportional to the strength of the hydrogen bond involved. Chls-a with non-H-bonded keto C131 groups exhibit the blue-most absorption bands, while both transitions are progressively red-shifted with increasing hydrogen-bonding strength - by up 382 & 605 cm-1 in the Qy and Soret band, respectively. These hydrogen bonds thus tune the site energy of Chl-a in light-harvesting proteins, determining (at least in part) the cascade of energy transfer events in these complexes.
Collapse
Affiliation(s)
- Manuel J Llansola-Portoles
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Fei Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pengqi Xu
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Simona Streckaite
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Cristian Ilioaia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Andrew Gall
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Andrew A Pascal
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France.
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
5
|
Duquesne K, Blanchard C, Sturgis JN. Molecular origins and consequences of High-800 LH2 in Roseobacter denitrificans. Biochemistry 2011; 50:6723-9. [PMID: 21739946 DOI: 10.1021/bi200538j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Roseobacter denitrificans is a marine bacterium capable of using a wide variety of different metabolic schemes and in particular is an anoxygenic aerobic photosynthetic bacterium. In the work reported here we use a deletion mutant that we have constructed to investigate the structural origin of the unusual High-800 light-harvesting complex absorption in this bacterium. We suggest that the structure is essentially unaltered when compared to the usual nonameric complexes but that a change in the environment of the C(13:1) carbonyl group is responsible for the change in spectrum. We tentatively relate this change to the presence of a serine residue in the α-polypeptide. Surprisingly, the low spectral overlap between the peripheral and core light-harvesting systems appears not to compromise energy collection efficiency too severely. We suggest that this may be at the expense of maintaining a low antenna size.
Collapse
Affiliation(s)
- Katia Duquesne
- LISM, CNRS - Aix-Marseille University, Marseilles, France
| | | | | |
Collapse
|
6
|
Braun P, Goldberg E, Negron C, von Jan M, Xu F, Nanda V, Koder RL, Noy D. Design principles for chlorophyll-binding sites in helical proteins. Proteins 2011; 79:463-76. [PMID: 21117078 DOI: 10.1002/prot.22895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cyclic tetrapyrroles, viz. chlorophylls (Chl), their bacterial analogs bacteriochlorophylls, and hemes are ubiquitous cofactors of biological catalysis that are involved in a multitude of reactions. One systematic approach for understanding how Nature achieves functional diversity with only this handful of cofactors is by designing de novo simple and robust protein scaffolds with heme and/or (bacterio)chlorophyll [(B)Chls]-binding sites. This strategy is currently mostly implemented for heme-binding proteins. To gain more insight into the factors that determine heme-/(B)Chl-binding selectivity, we explored the geometric parameters of (B)Chl-binding sites in a nonredundant subset of natural (B)Chl protein structures. Comparing our analysis to the study of a nonredundant database of heme-binding helical histidines by Negron et al. (Proteins 2009;74:400-416), we found a preference for the m-rotamer in (B)Chl-binding helical histidines, in contrast to the preferred t-rotamer in heme-binding helical histidines. This may be used for the design of specific heme- or (B)Chl-binding sites in water-soluble helical bundles, because the rotamer type defines the positioning of the bound cofactor with respect to the helix interface and thus the protein-binding site. Consensus sequences for (B)Chl binding were identified by combining a computational and database-derived approach and shown to be significantly different from the consensus sequences recommended by Negron et al. (Proteins 2009;74:400-416) for heme-binding helical proteins. The insights gained in this work on helix- (B)Chls-binding pockets provide useful guidelines for the construction of reasonable (B)Chl-binding protein templates that can be optimized by computational tools.
Collapse
Affiliation(s)
- Paula Braun
- Department Biologie I, Ludwig-Maximilians-Universität München, Botany, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pandit A, Buda F, van Gammeren AJ, Ganapathy S, de Groot HJM. Selective Chemical Shift Assignment of Bacteriochlorophyll a in Uniformly [13C−15N]-Labeled Light-Harvesting 1 Complexes by Solid-State NMR in Ultrahigh Magnetic Field. J Phys Chem B 2010; 114:6207-15. [DOI: 10.1021/jp100688u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjali Pandit
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan J. van Gammeren
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Swapna Ganapathy
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
|
9
|
Silber MV, Gabriel G, Strohmann B, Garcia-Martin A, Robert B, Braun P. Fine tuning of the spectral properties of LH2 by single amino acid residues. PHOTOSYNTHESIS RESEARCH 2008; 96:145-151. [PMID: 18365764 DOI: 10.1007/s11120-008-9294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.
Collapse
Affiliation(s)
- Martina V Silber
- Department Biologie I, Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Kwa LG, Wegmann D, Brügger B, Wieland FT, Wanner G, Braun P. Mutation of a single residue, beta-glutamate-20, alters protein-lipid interactions of light harvesting complex II. Mol Microbiol 2007; 67:63-77. [PMID: 18034796 PMCID: PMC2229836 DOI: 10.1111/j.1365-2958.2007.06017.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well established that assembly of the peripheral antenna complex, LH2, is required for proper photosynthetic membrane biogenesis in the purple bacterium Rhodobacter sphaeroides. The underlying interactions are, as yet, not understood. Here we examined the relationship between the morphology of the photosynthetic membrane and the lipid–protein interactions at the LH2–lipid interface. The non-bilayer lipid, phosphatidylethanolamine, is shown to be highly enriched in the boundary lipid phase of LH2. Sequence alignments indicate a putative lipid binding site, which includes β-glutamate-20 and the adjacent carotenoid end group. Replacement of β-glutamate-20 with alanine results in significant reduction of phosphatidylethanolamine and concomitant raise in phosphatidylcholine in the boundary lipid phase of LH2 without altering the lipid composition of the bulk phase. The morphology of the LH2 housing membrane is, however, unaffected by the amino acid replacement. In contrast, simultaneous modification of glutamate-20 and exchange of the carotenoid sphaeroidenone with neurosporene results in significant enlargement of the vesicular membrane invaginations. These findings suggest that the LH2 complex, specifically β-glutamate-20 and the carotenoids' polar head group, contribute to the shaping of the photosynthetic membrane by specific interactions with surrounding lipid molecules.
Collapse
Affiliation(s)
- Lee Gyan Kwa
- Department Biologie I der LM-Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Urboniene V, Vrublevskaja O, Trinkunas G, Gall A, Robert B, Valkunas L. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Biophys J 2007; 93:2188-98. [PMID: 17513366 PMCID: PMC1959563 DOI: 10.1529/biophysj.106.103093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.
Collapse
Affiliation(s)
- V Urboniene
- Department of General Physics and Spectroscopy, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
12
|
Garcia-Martin A, Kwa LG, Strohmann B, Robert B, Holzwarth AR, Braun P. Structural Role of (Bacterio)chlorophyll Ligated in the Energetically Unfavorable β-Position. J Biol Chem 2006; 281:10626-34. [PMID: 16484226 DOI: 10.1074/jbc.m510731200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorophyll is attached to apoprotein in diastereotopically distinct ways, by beta- and alpha-ligation. Both the beta- and alpha-ligated chlorophylls of photosystem I are shown to have ample contacts to apoprotein within their proteinaceous binding sites, in particular, at C-13 of the isocyclic ring. The H-bonding patterns for the C-13(1) oxo groups, however, are clearly distinct for the beta-ligated and alpha-ligated chlorophylls. The beta-ligated chlorophylls frequently employ their C-13(1) oxo in H-bonds to neighboring helices and subunits. In contrast, the C-13(1) oxo of alpha-ligated chlorophylls are significantly less involved in H-bonding interactions, particularly to neighboring helices. Remarkably, in the peripheral antenna, light harvesting complex (LH2) from Rhodobacter sphaeroides, a single mutation in the alpha-subunit, introduced to eliminate H-bonding to the beta-bacteriochlorophyll-B850, which is ligated in the "beta-position," results in significant thermal destabilization of the LH2 in the membrane. In addition, in comparison with wild type LH2, the expression level of the LH2 lacking this H-bond is significantly reduced. These findings show that H-bonding to the C-13(1) keto group ofbeta-ligated (bacterio)-chlorophyll is a key structural motif and significantly contributes to the stability of bacteriochlorophyll proteins in the native membrane. Our analysis of photosystem I and II suggests that this hitherto unrecognized motif involving H-bonding to beta-ligated chlorophylls may be equally critical for the stable assembly of the inner core antenna of these multicomponent chlorophyll proteins.
Collapse
|
13
|
Urboniene V, Vrublevskaja O, Gall A, Trinkunas G, Robert B, Valkunas L. Temperature broadening of LH2 absorption in glycerol solution. PHOTOSYNTHESIS RESEARCH 2005; 86:49-59. [PMID: 16172925 DOI: 10.1007/s11120-005-2748-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 02/21/2005] [Indexed: 05/04/2023]
Abstract
In order to determine the relationship between the pigment-protein and the pigment-pigment interactions, the measurements of absorption spectra of the peripheral light-harvesting complex LH2 from the purple bacteria Rhodobacter sphaeroides solvated in glycerol/buffer solution were carried out in a wide temperature range, from 4 to 250 K. The SDFs used for simulating the temperature dependence of B800 and B850 bands were determined in a parametric form. To fit experimental spectra the overall exciton-phonon coupling had to be assumed to be weak for B850 (lambda/2V approximately 0.3, where lambda is the reorganization energy and V is the nearest-neighbor dipole-dipole coupling for bacteriochlorophylls). At physiological temperatures the intermediate nuclear bath dynamics compares with the magnitude of energy gap fluctuations. Slower dynamics with kappa approximately 0.39, where kappa is the ratio of the nuclear relaxation rate and the line width parameter, determines the spectral shape of B850 whilst faster modulations characterize B800 (kappa approximately 2.39). The static disorder for the B800 band is relatively high with the characteristic value of the inhomogeneous bandwidth Gamma(inh) approximately 120 cm-1, while for the B850 band this value is almost equal to the dipole-dipole coupling strength (Gamma(inh) approximately 360 cm-1). It has been found that the LH2 absorption spectrum is likely to be influenced by the temperature dependence of the dielectric constant of the solution in the high temperature range, when the glycerol/buffer solution is in the liquid state.
Collapse
Affiliation(s)
- V Urboniene
- Service de Biophysique des Protéines et des Membranes, DBJC/CEA and CNRS/URA2096, C.E.A. Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Potter JA, Fyfe PK, Frolov D, Wakeham MC, van Grondelle R, Robert B, Jones MR. Strong Effects of an Individual Water Molecule on the Rate of Light-driven Charge Separation in the Rhodobacter sphaeroides Reaction Center. J Biol Chem 2005; 280:27155-64. [PMID: 15908429 DOI: 10.1074/jbc.m501961200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of a water molecule (water A) located between the primary electron donor (P) and first electron acceptor bacteriochlorophyll (B(A)) in the purple bacterial reaction center was investigated by mutation of glycine M203 to leucine (GM203L). The x-ray crystal structure of the GM203L reaction center shows that the new leucine residue packs in such a way that water A is sterically excluded from the complex, but the structure of the protein-cofactor system around the mutation site is largely undisturbed. The results of absorbance and resonance Raman spectroscopy were consistent with either the removal of a hydrogen bond interaction between water A and the keto carbonyl group of B(A) or a change in the local electrostatic environment of this carbonyl group. Similarities in the spectroscopic properties and x-ray crystal structures of reaction centers with leucine and aspartic acid mutations at the M203 position suggested that the effects of a glycine to aspartic acid substitution at the M203 position can also be explained by steric exclusion of water A. In the GM203L mutant, loss of water A was accompanied by an approximately 8-fold slowing of the rate of decay of the primary donor excited state, indicating that the presence of water A is important for optimization of the rate of primary electron transfer. Possible functions of this water molecule are discussed, including a switching role in which the redox potential of the B(A) acceptor is rapidly modulated in response to oxidation of the primary electron donor.
Collapse
Affiliation(s)
- Jane A Potter
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Kwa LG, García-Martín A, Végh AP, Strohmann B, Robert B, Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem 2004; 279:15067-75. [PMID: 14742420 DOI: 10.1074/jbc.m312429200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contribution of intramembrane hydrogen bonding at the interface between polypeptide and cofactor is explored in the native lipid environment by use of model bacteriochlorophyll proteins. In the peripheral antenna complex, LH2, large portions of the transmembrane helices, which make up the dimeric bacteriochlorophyll-binding site, are replaced by simplified, alternating alanine-leucine stretches. Replacement of either one of the two helices with the helices containing the model sequence at a time results in the assembly of complexes with nearly native light harvesting properties. In contrast, replacement of both helices results in the loss of antenna complexes from the membrane. The assembly of such doubly modified complexes is restored by a single intramembrane serine residue at position -4 relative to the liganding histidine of the alpha-subunit. In situ analysis of the spectral properties in a series of site-directed mutants reveals a critical dependence of the model complex assembly on the side chain of the residue at this position in the helix. A hydrogen bond between the hydroxy group of the serine and the 13(1) keto group of one of the central bacteriochlorophylls of the complexes is identified by Raman spectroscopy in the model antenna complex containing one of the alanine-leucine helices. The additional OH group of the serine residue, which participates in hydrogen bonding, increases the thermal stability of the model complexes in the native membrane. Intramembrane hydrogen bonding is thus shown to be a key factor for the binding of bacteriochlorophyll and assembly of this model cofactor-polypeptide site.
Collapse
Affiliation(s)
- Lee G Kwa
- Department Biologie I der Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|