1
|
Sequeira AN, O’Keefe IP, Katju V, Bergthorsson U. Friend turned foe: selfish behavior of a spontaneously arising mitochondrial deletion in an experimentally evolved Caenorhabditis elegans population. G3 (BETHESDA, MD.) 2024; 14:jkae018. [PMID: 38261394 PMCID: PMC11090458 DOI: 10.1093/g3journal/jkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Selfish mitochondrial DNA (mtDNA) mutations are variants that can proliferate within cells and enjoy a replication or transmission bias without fitness benefits for the host. mtDNA deletions in Caenorhabditis elegans can reach high heteroplasmic frequencies despite significantly reducing fitness, illustrating how new mtDNA variants can give rise to genetic conflict between different levels of selection and between the nuclear and mitochondrial genomes. During a mutation accumulation experiment in C. elegans, a 1,034-bp deletion originated spontaneously and reached an 81.7% frequency within an experimental evolution line. This heteroplasmic mtDNA deletion, designated as meuDf1, eliminated portions of 2 protein-coding genes (coxIII and nd4) and tRNA-thr in entirety. mtDNA copy number in meuDf1 heteroplasmic individuals was 35% higher than in individuals with wild-type mitochondria. After backcrossing into a common genetic background, the meuDf1 mitotype was associated with reduction in several fitness traits and independent competition experiments found a 40% reduction in composite fitness. Experiments that relaxed individual selection by single individual bottlenecks demonstrated that the deletion-bearing mtDNA possessed a strong transmission bias, thereby qualifying it as a novel selfish mitotype.
Collapse
Affiliation(s)
- Abigail N Sequeira
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Ian P O’Keefe
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Department of Biochemistry and Molecular Biology, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
- Program in Evolutionary Biology, Department of Ecology and Genetics (IEG), Evolutionsbiologiskt centrum, Norbyvägen 18D, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
2
|
Xu YC, Su J, Zhou JJ, Yuan Q, Han JS. Roles of MT-ND1 in Cancer. Curr Med Sci 2023; 43:869-878. [PMID: 37642864 DOI: 10.1007/s11596-023-2771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 08/31/2023]
Abstract
The energy shift toward glycolysis is one of the hallmarks of cancer. Complex I is a vital enzyme complex necessary for oxidative phosphorylation. The mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1 (MT-ND1) is the largest subunit coded by mitochondria of complex I. The present study summarizes the structure and biological function of MT-ND1. From databases and literature, the expressions and mutations of MT-ND1 in a variety of cancers have been reviewed. MT-ND1 may be a biomarker for cancer diagnosis and prognosis. It is also a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yi-Chun Xu
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| | - Jun Su
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China
| | - Jia-Jing Zhou
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Qing Yuan
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Jun-Song Han
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| |
Collapse
|
3
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
4
|
Barliana MI, Afifah NN, Yunivita V, Ruslami R. Genetic polymorphism related to ethambutol outcomes and susceptibility to toxicity. Front Genet 2023; 14:1118102. [PMID: 37152993 PMCID: PMC10157140 DOI: 10.3389/fgene.2023.1118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
The World Health Organization (WHO) stated that ensuring access to effective and optimal treatment is a key component to eradicate tuberculosis (TB) through the End TB Strategy. Personalized medicine that depends on the genetic profile of an individual is one way to optimize treatment. It is necessary because of diverse drug responses related to the variation in human DNA, such as single-nucleotide polymorphisms (SNPs). Ethambutol (EMB) is a drug widely used as the treatment for Mycobacterium Tuberculosis (Mtb) and/non-tuberculous mycobacteria and has become a potential supplementary agent for a treatment regimen of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In human genetic polymorphism studies of anti-tuberculosis, the majority focus on rifampicin or isoniazid, which discuss polymorphisms related to their toxicity. Whereas there are few studies on EMB, the incidence of EMB toxicity is lower than that of other first-line anti-TB drugs. To facilitate personalized medicine practice, this article summarizes the genetic polymorphisms associated with alterations in the pharmacokinetic profile, resistance incidence, and susceptibility to EMB toxicity. This study includes 131 total human studies from 17 articles, but only eight studies that held in the low-middle income country (LMIC), while the rest is research conducted in developed countries with high incomes. Personalized medicine practices are highly recommended to maintain and obtain the optimal therapeutic effect of EMB.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Melisa Intan Barliana,
| | - Nadiya Nurul Afifah
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
5
|
Faria R, Albuquerque T, Neves AR, Sousa Â, Costa DRB. Nanotechnology to Correct Mitochondrial Disorders in Cancer Diseases. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
7
|
IFNγ Regulates NAD+ Metabolism to Promote the Respiratory Burst in Human Monocytes. Blood Adv 2022; 6:3821-3834. [PMID: 35500221 DOI: 10.1182/bloodadvances.2021005776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
IFNγ is an essential and pleiotropic activator of human monocytes, but little is known about the changes in cellular metabolism required for IFNγ-induced activation. We sought to elucidate the mechanisms by which IFNγ reprograms monocyte metabolism to support its immunologic activities. We found that IFNγ increased oxygen consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation by both mitochondria and NADPH oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by IFNγ-induced reprogramming of NAD+ metabolism, which is dependent on nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ salvage to generate NADH and NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively. Consistent with this pathway, monocytes from patients with gain-of-function mutations in STAT1 demonstrated higher than normal OCR. Whereas chemical or genetic disruption of mitochondrial complex I (rotenone treatment or Leigh Syndrome patient monocytes) or NADPH oxidase (DPI treatment or chronic granulomatous disease (CGD) patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy monocytes completely abrogated the IFNγ-induced oxygen consumption, comparable to levels observed in CGD monocytes. These data identify an IFNγ-induced, NAMPT-dependent, NAD+ salvage pathway that is critical for IFNγ activation of human monocytes.
Collapse
|
8
|
Zanfardino P, Doccini S, Santorelli FM, Petruzzella V. Tackling Dysfunction of Mitochondrial Bioenergetics in the Brain. Int J Mol Sci 2021; 22:8325. [PMID: 34361091 PMCID: PMC8348117 DOI: 10.3390/ijms22158325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Stefano Doccini
- IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy;
| | | | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
9
|
Takenaga K, Koshikawa N, Akimoto M, Tatsumi Y, Lin J, Itami M, Nagase H. MCT4 is induced by metastasis-enhancing pathogenic mitochondrial NADH dehydrogenase gene mutations and can be a therapeutic target. Sci Rep 2021; 11:13302. [PMID: 34172808 PMCID: PMC8233425 DOI: 10.1038/s41598-021-92772-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pathogenic mitochondrial NADH dehydrogenase (ND) gene mutations enhance the invasion and metastasis of various cancer cells, and they are associated with metastasis in human non-small cell lung cancer (NSCLC). Moreover, monocarboxylate transporter 4 (MCT4) is overexpressed in solid cancers and plays a role in cancer cell proliferation and survival. Here, we report that MCT4 is exclusively expressed in mouse transmitochondrial cybrids with metastasis-enhancing pathogenic ND6 mutations. A high level of MCT4 is also detected in human NSCLC cell lines and tissues predicted to carry pathogenic ND mutations and is associated with poor prognosis in NSCLC patients. MCT4 expression in the cell lines is suppressed by N-acetyl-L-cysteine. Phosphatidylinositol-3 kinase (PI3K), AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) are involved in the regulation of MCT4 expression in the transmitochondrial cybrid cells. An MCT1/4 inhibitor effectively kills NSCLC cells with predicted pathogenic ND mutations, but an MCT1/2 inhibitor does not have the same effect. Thus, MCT4 expression is augmented by pathogenic ND mutations and could be a biomarker and a therapeutic target in pathogenic ND mutation-harbouring metastatic tumours.
Collapse
Affiliation(s)
- Keizo Takenaga
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan.
| | - Nobuko Koshikawa
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yasutoshi Tatsumi
- Laboratory of Oncogenomics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Jason Lin
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Makiko Itami
- Department of Pathology, Chiba Cancer Center Hospital, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| |
Collapse
|
10
|
Ji K, Wang W, Lin Y, Xu X, Liu F, Wang D, Zhao Y, Yan C. Mitochondrial encephalopathy Due to a Novel Pathogenic Mitochondrial tRNA Gln m.4349C>T Variant. Ann Clin Transl Neurol 2021; 7:980-991. [PMID: 32588991 PMCID: PMC7318088 DOI: 10.1002/acn3.51069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA, among which, mutations in mitochondrial tRNA genes possessing prominent status. In most of the cases, however, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear. METHODS We performed the clinical emulation, muscle histochemistry, northern blotting analysis of tRNA levels, biochemical measurement of respiratory chain complex activities and mitochondrial respirations in muscle tissue and cybrid cells. RESULTS We found a novel m.4349C>T mutation in mitochondrial tRNAGln gene in a patient present with encephalopathy, epilepsy, and deafness. We demonstrated molecular pathomechanisms of this mutation. This mutation firstly disturbed the translation machinery of mitochondrial tRNAGln and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction and ROS production. INTERPRETATION This study illustrated the pathogenicity of a novel m.4349C>T mutation and provided a better understanding of the phenotype associated with mutations in mitochondrial tRNAGln gene.
Collapse
Affiliation(s)
- Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Fuchen Liu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, 266035, China.,Brain Science Research Institute, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
11
|
Wong LJC, Chen T, Schmitt ES, Wang J, Tang S, Landsverk M, Li F, Zhang S, Wang Y, Zhang VW, Craigen WJ. Clinical and laboratory interpretation of mitochondrial mRNA variants. Hum Mutat 2020; 41:1783-1796. [PMID: 32652755 DOI: 10.1002/humu.24082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
Interpretation of mitochondrial protein-encoding (mt-mRNA) variants has been challenging due to mitochondrial characteristics that have not been addressed by American College of Medical Genetics and Genomics guidelines. We developed criteria for the interpretation of mt-mRNA variants via literature review of reported variants, tested and refined these criteria by using our new cases, followed by interpreting 421 novel variants in our clinical database using these verified criteria. A total of 32 of 56 previously reported pathogenic (P) variants had convincing evidence for pathogenicity. These variants are either null variants, well-known disease-causing variants, or have robust functional data or strong phenotypic correlation with heteroplasmy levels. Based on our criteria, 65.7% (730/1,111) of variants of unknown significance (VUS) were reclassified as benign (B) or likely benign (LB), and one variant was scored as likely pathogenic (LP). Furthermore, using our criteria we classified 2, 12, and 23 as P, LP, and LB, respectively, among 421 novel variants. The remaining stayed as VUS (91.2%). Appropriate interpretation of mt-mRNA variants is the basis for clinical diagnosis and genetic counseling. Mutation type, heteroplasmy levels in different tissues of the probands and matrilineal relatives, in silico predictions, population data, as well as functional studies are key points for pathogenicity assessments.
Collapse
Affiliation(s)
- Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Ting Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Eric S Schmitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sha Tang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Megan Landsverk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Fangyuan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shulin Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Victor W Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| |
Collapse
|
12
|
Hyun DH. Insights into the New Cancer Therapy through Redox Homeostasis and Metabolic Shifts. Cancers (Basel) 2020; 12:cancers12071822. [PMID: 32645959 PMCID: PMC7408991 DOI: 10.3390/cancers12071822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Modest levels of reactive oxygen species (ROS) are necessary for intracellular signaling, cell division, and enzyme activation. These ROS are later eliminated by the body’s antioxidant defense system. High amounts of ROS cause carcinogenesis by altering the signaling pathways associated with metabolism, proliferation, metastasis, and cell survival. Cancer cells exhibit enhanced ATP production and high ROS levels, which allow them to maintain elevated proliferation through metabolic reprograming. In order to prevent further ROS generation, cancer cells rely on more glycolysis to produce ATP and on the pentose phosphate pathway to provide NADPH. Pro-oxidant therapy can induce more ROS generation beyond the physiologic thresholds in cancer cells. Alternatively, antioxidant therapy can protect normal cells by activating cell survival signaling cascades, such as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in response to radio- and chemotherapeutic drugs. Nrf2 is a key regulator that protects cells from oxidative stress. Under normal conditions, Nrf2 is tightly bound to Keap1 and is ubiquitinated and degraded by the proteasome. However, under oxidative stress, or when treated with Nrf2 activators, Nrf2 is liberated from the Nrf2-Keap1 complex, translocated into the nucleus, and bound to the antioxidant response element in association with other factors. This cascade results in the expression of detoxifying enzymes, including NADH-quinone oxidoreductase 1 (NQO1) and heme oxygenase 1. NQO1 and cytochrome b5 reductase can neutralize ROS in the plasma membrane and induce a high NAD+/NADH ratio, which then activates SIRT1 and mitochondrial bioenergetics. NQO1 can also stabilize the tumor suppressor p53. Given their roles in cancer pathogenesis, redox homeostasis and the metabolic shift from glycolysis to oxidative phosphorylation (through activation of Nrf2 and NQO1) seem to be good targets for cancer therapy. Therefore, Nrf2 modulation and NQO1 stimulation could be important therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
13
|
Mitochondrial Genome (mtDNA) Mutations that Generate Reactive Oxygen Species. Antioxidants (Basel) 2019; 8:antiox8090392. [PMID: 31514455 PMCID: PMC6769445 DOI: 10.3390/antiox8090392] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.
Collapse
|
14
|
Hahn A, Zuryn S. The Cellular Mitochondrial Genome Landscape in Disease. Trends Cell Biol 2018; 29:227-240. [PMID: 30509558 DOI: 10.1016/j.tcb.2018.11.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.
Collapse
Affiliation(s)
- Anne Hahn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia
| | - Steven Zuryn
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Australia.
| |
Collapse
|
15
|
Santacatterina F, Torresano L, Núñez-Salgado A, Esparza-Molto PB, Olive M, Gallardo E, García-Arumi E, Blazquez A, González-Quintana A, Martín MA, Cuezva JM. Different mitochondrial genetic defects exhibit the same protein signature of metabolism in skeletal muscle of PEO and MELAS patients: A role for oxidative stress. Free Radic Biol Med 2018; 126:235-248. [PMID: 30138712 DOI: 10.1016/j.freeradbiomed.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A major challenge in mitochondrial diseases (MDs) is the identification of biomarkers that could inform of the mechanisms involved in the phenotypic expression of genetic defects. Herein, we have investigated the protein signature of metabolism and of the antioxidant response in muscle biopsies of clinically and genetically diagnosed patients with Progressive External Ophthalmoplegia due to single large-scale (PEO-sD) or multiple (PEO-mD) deletions of mtDNA and Mitochondrial Encephalopathy Lactic Acidosis and Stroke-like episode (MELAS) syndrome, and healthy donors. A high-throughput immunoassay technique that quantitates the expression of relevant proteins of glycolysis, glycogenolysis, pentose phosphate pathway, oxidative phosphorylation, pyruvate and fatty acid oxidation, tricarboxylic acid cycle and the antioxidant response in two large independent and retrospectively collected cohorts of PEO-sD, PEO-mD and MELAS patients revealed that despite the heterogeneity of the genetic alterations, the three MDs showed the same metabolic signatures in both cohorts of patients, which were highly divergent from those of healthy individuals. Linear Discriminant Analysis and Support Vector Machine classifier provided a minimum of four biomarkers to discriminate healthy from pathological samples. Regardless of the induction of a large number of enzymes involved in ameliorating oxidative stress, the down-regulation of mitochondrial superoxide dismutase (SOD2) and catalase expression favored the accumulation of oxidative damage in patients' proteins. Down-regulation of SOD2 and catalase expression in MD patients is not due to relevant changes in the availability of their mRNAs, suggesting that oxidative stress regulates the expression of the two enzymes post-transcriptionally. We suggest that SOD2 and catalase could provide specific targets to improve the detoxification of reactive oxygen species that affects muscle proteins in these patients.
Collapse
Affiliation(s)
- Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Laura Torresano
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Alfonso Núñez-Salgado
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain
| | - Pau B Esparza-Molto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Montse Olive
- Servicio de Anatomía Patológica, Unidad Patología Neuromuscular, IDIBELL-Hospital Universitario de Bellvitge, Spain
| | - Eduard Gallardo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena García-Arumi
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Laboratorio de Patología Mitocondrial y Neuromuscular, Área de Genética Clínica y Molecular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Blazquez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Adrián González-Quintana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Miguel A Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
16
|
Tseng CC, Chen CJ, Yen JH, Huang HY, Chang JG, Chang SJ, Liao WT. Next-generation sequencing profiling of mitochondrial genomes in gout. Arthritis Res Ther 2018; 20:137. [PMID: 29976239 PMCID: PMC6034246 DOI: 10.1186/s13075-018-1637-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence implicates mitochondrial DNA (mtDNA) alleles, which are independent of the nuclear genome, in disease, especially in human metabolic diseases. However, this area of investigation has lagged behind in researching the nuclear alleles in complex traits, for example, in gout. Methods Next-generation sequencing was utilized to investigate the relationship between mtDNA alleles and phenotypic variations in 52 male patients with gout and 104 age-matched male non-gout controls from the Taiwan Biobank whole-genome sequencing samples. Differences from a reference sequence (GRCh38) were identified. The sequence kernel association test (SKAT) was applied to identify gout-associated alleles in mitochondrial genes. The tools Polymorphism Phenotyping, Sorting Intolerant From Tolerant (SIFT), Predict the pathology of Mutations (PMUT), Human Mitochondrial Genome Database (mtDB), Multiple Alignment using Fast Fourier Transform (MAFFT), and Mammalian Mitochondrial tRNA Genes (Mamit-tRNA) were used to evaluate pathogenicity of alleles. Validation of selected alleles by quantitative polymerase chain reaction of single nucleotide polymorphisms (qPCR SNPs) was also performed. Results We identified 456 alleles in patients with gout and 640 alleles in non-gout controls with 274 alleles shared by both. Mitochondrial genes were associated with gout, with MT-CO3, MT-TA, MT-TC, and MT-TT containing potentially pathogenic gout-associated alleles and displaying evidence of gene-gene interactions. All heteroplasmy levels of potentially pathogenic alleles exceeded metabolic thresholds for pathogenicity. Validation assays confirmed the next-generation sequencing results of selected alleles. Among them, potentially pathogenic MT-CO3 alleles correlated with high-density lipoprotein (HDL) levels (P = 0.034). Conclusion This study provided two scientific insights. First, this was the most extensive mitochondrial genomic profiling associated with gout. Second, our results supported the roles of mitochondria in gout and HDL, and this comprehensive analysis framework can be applied to other diseases in which mitochondrial dysfunction has been implicated. Electronic supplementary material The online version of this article (10.1186/s13075-018-1637-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsi-Yuan Huang
- Department of Laboratory Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung, Taiwan.
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Zhang J, Ji Y, Liu X, Chen J, Wang B, Zhang M, Guan MX. Leber's hereditary optic neuropathy caused by a mutation in mitochondrial tRNA Thr in eight Chinese pedigrees. Mitochondrion 2017; 42:84-91. [PMID: 29225014 DOI: 10.1016/j.mito.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE The purpose of this study was to investigate the pathophysiology underlying Leber's hereditary optic neuropathy (LHON)-associated mitochondrial tRNA mutation. METHODS Severn hundred ninety-seven Han Chinese subjects underwent clinical and genetic evaluation and analysis of mitochondrial DNA (mtDNA). The cybrid cell lines were constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells. These cell lines were assayed by tRNA Northern blot and Western blot analyses, respiratory enzymatic activities, the rate of ATP production and the generation of reactive oxygen species. RESULTS The tRNAThr 15927G>A mutation was identified in eight probands with suggestively maternal inheritance among 352 Han Chinese probands lacking these known LHON-associated mtDNA mutations. The m.15927G>A mutation affected a highly conserved guanine at position 42 at the anticodon-stem of tRNAThr, destabilizing the conservative base pairing (28C-42G). We therefore hypothesized that the m.15927G>A mutation, and altered the structure and function of tRNAThr. Northern blot analysis revealed 60% decrease in the steady-state level of tRNAThr in the mutant cell lines. Western blot analysis showed the variable reductions of 4 mtDNA encoding proteins, especially for marked decrease of ND1 and CYTB observed in mutant cell lines. Furthermore, we demonstrated that the m.15927G>A mutation decreased the activities of mitochondrial complexes I and III, markedly diminished mitochondrial ATP levels, and increased the production of reactive oxygen species in the mutant cells. CONCLUSIONS Our data demonstrated the first mitochondrial tRNA mutation leading to LHON. Our findings may provide new insights into the understanding of pathophysiology of LHON.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bibin Wang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Li H, Geng J, Yu H, Tang X, Yang X, Xue L. Mitochondrial tRNA Thr 15909A>G mutation associated with hypertension in a Chinese Han pedigree. Biochem Biophys Res Commun 2017; 495:574-581. [PMID: 29129694 DOI: 10.1016/j.bbrc.2017.11.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA mutations are one of the molecular genetic bases of hypertension. Here, we performed clinical, genetic and mutational evaluation, molecular characterization as well as biochemical analysis of a Chinese Han family with maternally inherited hypertension. The m.15909A > G variant in tRNAThr was identified. This mutation abolished a highly conserved base pairing (11U-24A) in the D-stem of tRNAThr and affected the structure and function of mitochondrial tRNAThr. As a result, the overall levels of mitochondrial translation products was decreased. The reduced mitochondrial protein synthesis resulted in the decrease in the activity of complex, and in turn, the production of ATP decreased and the generation of ROS increased. The m.15909A > G mutation maybe an inherited factor leading to the development of hypertension in this Chinese Han pedigree.
Collapse
Affiliation(s)
- Haiying Li
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of Cardiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Junwei Geng
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Han Yu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangjun Yang
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
19
|
Zhang J, Liu X, Liang X, Lu Y, Zhu L, Fu R, Ji Y, Fan W, Chen J, Lin B, Yuan Y, Jiang P, Zhou X, Guan MX. A novel ADOA-associated OPA1 mutation alters the mitochondrial function, membrane potential, ROS production and apoptosis. Sci Rep 2017; 7:5704. [PMID: 28720802 PMCID: PMC5515948 DOI: 10.1038/s41598-017-05571-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a dominantly inherited optic neuropathy, affecting the specific loss of retinal ganglion cells (RGCs). The majority of affected cases of ADOA are associated with mutations in OPA1 gene. Our previous investigation identified the c.1198C > G (p.P400A) mutation in the OPA1 in a large Han Chinese family with ADOA. In this report, we performed a functional characterization using lymphoblostoid cell lines derived from affected members of this family and control subjects. Mutant cell lines exhibited the aberrant mitochondrial morphology. A ~24.6% decrease in the mitochondrial DNA (mtDNA) copy number was observed in mutant cell lines, as compared with controls. Western blotting analysis revealed the variable reductions (~45.7%) in four mtDNA-encoded polypeptides in mutant cell lines. The impaired mitochondrial translation caused defects in respiratory capacity. Furthermore, defects in mitochondrial ATP synthesis and mitochondrial membrane potential (ΔΨm) were observed in mutant cell lines. These abnormalities resulted in the accumulation of oxidative damage and increasing of apoptosis in the mutant cell lines, as compared with controls. All those alterations may cause the primary degeneration of RGCs and subsequent visual loss. These data provided the direct evidence for c.1198C > G mutation leading to ADOA. Our findings may provide new insights into the understanding of pathophysiology of ADOA.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoyang Liang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yuanyuan Lu
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Runing Fu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wenlu Fan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bing Lin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yimin Yuan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
20
|
Mori MP, Costa RAP, Soltys DT, Freire TDS, Rossato FA, Amigo I, Kowaltowski AJ, Vercesi AE, de Souza-Pinto NC. Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress. Sci Rep 2017; 7:155. [PMID: 28273955 PMCID: PMC5427820 DOI: 10.1038/s41598-017-00130-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H2O2 and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Mateus P Mori
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Rute A P Costa
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela T Soltys
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Thiago de S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Franco A Rossato
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ignácio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Aníbal E Vercesi
- Department of Clinical Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem 2017; 292:2881-2892. [PMID: 28049726 DOI: 10.1074/jbc.m116.749374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Xiaohui Cang
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Yanyan Peng
- the Institute of Genetics and.,the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronghua Li
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307
| | | | | | | | - Anna S Guan
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | - Nathan Fischel-Ghosian
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | | | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the Institute of Genetics and.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
22
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-10985. [PMID: 27536005 PMCID: PMC5159531 DOI: 10.1093/nar/gkw726] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023] Open
Abstract
In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA.
Collapse
Affiliation(s)
- Meng Wang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zheng
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaofen Jin
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Impairment of extramitochondrial oxidative phosphorylation in mouse rod outer segments by blue light irradiation. Biochimie 2016; 125:171-8. [DOI: 10.1016/j.biochi.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 01/30/2023]
|
25
|
Rak M, Bénit P, Chrétien D, Bouchereau J, Schiff M, El-Khoury R, Tzagoloff A, Rustin P. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 2016; 130:393-407. [PMID: 26846578 PMCID: PMC4948581 DOI: 10.1042/cs20150707] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance of studying different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy.
Collapse
Affiliation(s)
- Malgorzata Rak
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Paule Bénit
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Dominique Chrétien
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Juliette Bouchereau
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Reference Center for Inherited Metabolic Diseases, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 48 Boulevard Sérurier, 75019 Paris, France
| | - Riyad El-Khoury
- American University of Beirut Medical Center, Department of Pathology and Laboratory Medicine, Cairo Street, Hamra, Beirut, Lebanon
| | - Alexander Tzagoloff
- Biological Sciences Department, Columbia University, New York, NY 10027, U.S.A
| | - Pierre Rustin
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France Faculté de Médecine Denis Diderot, Université Paris Diderot-Paris 7, Site Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
26
|
Cruz-Bermúdez A, Vicente-Blanco RJ, Hernández-Sierra R, Montero M, Alvarez J, González Manrique M, Blázquez A, Martín MA, Ayuso C, Garesse R, Fernández-Moreno MA. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity. PLoS One 2016; 11:e0146816. [PMID: 26784702 PMCID: PMC4718627 DOI: 10.1371/journal.pone.0146816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ramiro J. Vicente-Blanco
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosana Hernández-Sierra
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mayte Montero
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | - Alberto Blázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Angel Martín
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundacion Jimenez Diaz University Hospital (IIS-FJD, UAM), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| | - Miguel A. Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| |
Collapse
|
27
|
Jiang P, Jin X, Peng Y, Wang M, Liu H, Liu X, Zhang Z, Ji Y, Zhang J, Liang M, Zhao F, Sun YH, Zhang M, Zhou X, Chen Y, Mo JQ, Huang T, Qu J, Guan MX. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet 2015; 25:584-96. [PMID: 26647310 DOI: 10.1093/hmg/ddv498] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/01/2015] [Indexed: 01/18/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2.
Collapse
Affiliation(s)
- Pingping Jiang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xiaofen Jin
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zengjun Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min Liang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Fuxin Zhao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yan-Hong Sun
- Department of Ophthalmology, Beijing University of Chinese Medicine and Pharmacology, Beijing, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China and
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Ye Chen
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, CA, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jia Qu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China,
| |
Collapse
|
28
|
Müller-Höcker J, Schäfer S, Krebs S, Blum H, Zsurka G, Kunz WS, Prokisch H, Seibel P, Jung A. Oxyphil cell metaplasia in the parathyroids is characterized by somatic mitochondrial DNA mutations in NADH dehydrogenase genes and cytochrome c oxidase activity-impairing genes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 184:2922-35. [PMID: 25418474 DOI: 10.1016/j.ajpath.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 02/01/2023]
Abstract
Oxyphil cell transformation of epithelial cells due to the accumulation of mitochondria occurs often during cellular aging. To understand the pathogenic mechanisms, we studied mitochondrial DNA (mtDNA) alterations in the three cell types of the parathyroids using multiplex real-time PCR and next-generation sequencing. mtDNA was analyzed from cytochrome c oxidase (COX)-positive and COX-negative areas of 19 parathyroids. Mitochondria-rich pre-oxyphil/oxyphil cells were more prone to develop COX defects than the mitochondria-poor clear chief cells (P < 0.001). mtDNA increased approximately 2.5-fold from clear chief to oxyphil cells. In COX deficiency, the increase was even more pronounced, and COX-negative oxyphil cells had approximately two times more mtDNA than COX-positive oxyphil cells (P < 0.001), illustrating the influence of COX deficiency on mtDNA biosynthesis, probably as a consequence of insufficient ATP synthesis. Next-generation sequencing revealed a broad spectrum of putative pathogenic mtDNA point mutations affecting NADH dehydrogenase and COX genes as well as regulatory elements of mtDNA. NADH dehydrogenase gene mutations preferentially accumulated in COX-positive pre-oxyphil/oxyphil cells and, therefore, could be essential for inducing oxyphil cell transformation by increasing mtDNA/mitochondrial biogenesis. In contrast, COX-negative cells predominantly harbored mutations in the MT-CO1 and MT-CO3 genes and in regulatory mtDNA elements, but only rarely NADH dehydrogenase mutations. Thus, multiple hits in NADH dehydrogenase and COX activity-impairing genes represent the molecular basis of oxyphil cell transformation in the parathyroids.
Collapse
Affiliation(s)
- Josef Müller-Höcker
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabine Schäfer
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Krebs
- Gene Center of the Ludwig-Maximilians-Universität München, Campus Großhadern, Munich, Germany
| | - Helmut Blum
- Gene Center of the Ludwig-Maximilians-Universität München, Campus Großhadern, Munich, Germany
| | - Gábor Zsurka
- Division of Neurochemistry, Department of Epileptology and Life and Brain Center, University of Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Epileptology and Life and Brain Center, University of Bonn, Bonn, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Peter Seibel
- Molekulare Zellbiologie, Biotechnological Biomedical Center, Universität Leipzig, Leipzig, Germany
| | - Andreas Jung
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
29
|
Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion 2015; 21:58-68. [PMID: 25643991 DOI: 10.1016/j.mito.2015.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/10/2015] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Sebastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Morgane Canonne
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
30
|
Ruhoy IS, Saneto RP. The genetics of Leigh syndrome and its implications for clinical practice and risk management. APPLICATION OF CLINICAL GENETICS 2014; 7:221-34. [PMID: 25419155 PMCID: PMC4235479 DOI: 10.2147/tacg.s46176] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leigh syndrome, also referred to as subacute necrotizing encephalomyelopathy, is a severe, early-onset neurodegenerative disorder that is relentlessly progressive and devastating to both the patient and the patient’s family. Attributed to the ultimate failure of the mitochondrial respiratory chain, once it starts, the disease often results in the regression of both mental and motor skills, leading to disability and rapid progression to death. It is a mitochondrial disorder with both phenotypic and genetic heterogeneity. The cause of death is most often respiratory failure, but there are a whole host of complications, including refractory seizures, that may further complicate morbidity and mortality. The symptoms may develop slowly or with rapid progression, usually associated with age of onset. Although the disease is usually diagnosed within the first year of life, it is important to note that recent studies reveal phenotypic heterogeneity, with some patients having evidence of in utero presentation and others having adult-onset symptoms.
Collapse
Affiliation(s)
- Ilene S Ruhoy
- Division of Pediatric Neurology, Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| | - Russell P Saneto
- Division of Pediatric Neurology, Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Zhang J, Jiang P, Jin X, Liu X, Zhang M, Xie S, Gao M, Zhang S, Sun YH, Zhu J, Ji Y, Wei QP, Tong Y, Guan MX. Leber's hereditary optic neuropathy caused by the homoplasmic ND1 m.3635G>A mutation in nine Han Chinese families. Mitochondrion 2014; 18:18-26. [PMID: 25194554 DOI: 10.1016/j.mito.2014.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022]
Abstract
In this report, we investigated the molecular mechanism underlying Leber's hereditary optic neuropathy (LHON)-associated mitochondrial m.3635G>A (p.S110N, ND1) mutation. A mutational screening of ND1 gene in a cohort of 1070 Han Chinese subjects LHON identified the m.3635G>A mutation in nine Chinese families with suggestively maternally transmitted LHON. Thirty-eight (22 males/16 females) of 162 matrilineal relatives in these families exhibited the variable severity and age-at-onset of optic neuropathy. Molecular analysis of their mitochondrial genomes identified the homoplasmic m.3635G>A mutation and distinct sets of polymorphisms belonging to the Asian haplogroups G2a1, R11a, D4, R11a, M7b2, G1a, F1a1, B4, and N9a3, respectively. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from one Chinese family into mtDNA-less (ρ(0)) cells, we showed ~27% decrease in the activity of NADH:ubiquinone oxidoreductase (complex I) in mutant cybrids carrying the m.3635G>A mutation, compared with control cybrids. The respiratory deficiency caused by the m.3635G>A mutation results in decreased efficiency of mitochondrial ATP synthesis. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cybrids. The data provide the direct evidence for the m.3635G>A mutation leading to LHON. Our findings may provide new insights into the understanding of pathophysiology of LHON.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofen Jin
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Shipeng Xie
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Min Gao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sai Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan-Hong Sun
- Department of Ophthalmology, Beijing University of Chinese Medicine and Pharmacology, Beijing, China
| | - Jinping Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi-Ping Wei
- Department of Ophthalmology, Beijing University of Chinese Medicine and Pharmacology, Beijing, China
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
32
|
Walker UA, Lebrecht D, Reichard W, Kirschner J, Bissé E, Iversen L, Venhoff AC, Venhoff N. Zidovudine induces visceral mitochondrial toxicity and intra-abdominal fat gain in a rodent model of lipodystrophy. Antivir Ther 2014; 19:783-92. [PMID: 24584039 DOI: 10.3851/imp2758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The use of zidovudine is associated with a loss of subcutaneous adipose tissue (SAT). We assessed if zidovudine treatment also affects visceral adipose tissue (VAT) and if uridine supplementation abrogates the adverse effects of zidovudine on VAT. METHODS Rats were fed zidovudine for 21 weeks with or without simultaneous uridine supplementation. Control animals did not receive zidovudine, or were treated with uridine alone. Changes in SAT and VAT were monitored by magnetic resonance imaging. Adipose tissue was examined for structural and molecular signs of mitochondrial toxicity. RESULTS Zidovudine induced lipoatrophy in SAT and fat hypertrophy in VAT. Compared with controls zidovudine-exposed VAT adipocytes had increased diameters, microvesicular steatosis and enlarged mitochondria with disrupted crystal architecture on electron microscopy. VAT adipocyte mitochondrial DNA (mtDNA) copy numbers were diminished, as were mtDNA-encoded respiratory chain proteins. The 'common' mtDNA deletion was detected in high frequencies in zidovudine treated animals, but not in the controls. Although mtDNA depletion was more profound in SAT compared with VAT, the 'common' deletion tended to be more frequent in the VAT than in the SAT. Uridine coadministration abrogated all effects of zidovudine on VAT and SAT pathology. CONCLUSIONS Zidovudine induces a gain of intra-abdominal fat in association with quantitative and qualitative alterations of the mitochondrial genome and impaired expression of mtDNA-encoded respiratory chain components, indicating that zidovudine may contribute to abdominal fat hypertrophy in HIV-infected patients. In this rodent model, uridine supplementation abrogates both SAT and VAT pathology induced by zidovudine.
Collapse
Affiliation(s)
- Ulrich A Walker
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 2013; 19:1469-80. [PMID: 23581604 PMCID: PMC3797460 DOI: 10.1089/ars.2012.4845] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. RESULTS The results of our investigation provide experimental evidence that the production of ROS is strongly increased in either model, supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I. INNOVATION Dissociation of supercomplexes may link oxidative stress and energy failure in a vicious circle. CONCLUSION Our findings support a central role of mitochondrial supramolecular structure in the development of the aging process and in the etiology and pathogenesis of most major chronic diseases.
Collapse
Affiliation(s)
- Evelina Maranzana
- 1 Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, Università di Bologna , Bologna, Italy
| | | | | | | | | |
Collapse
|
34
|
Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, Ghelli A, Nanni P, De Giovanni C, Carelli V, Fato R, Lollini PL, Rugolo M, Gasparre G, Porcelli AM. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet 2013; 23:1453-66. [DOI: 10.1093/hmg/ddt533] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
35
|
Vidoni S, Zanna C, Rugolo M, Sarzi E, Lenaers G. Why mitochondria must fuse to maintain their genome integrity. Antioxid Redox Signal 2013; 19:379-88. [PMID: 23350575 PMCID: PMC3700062 DOI: 10.1089/ars.2012.4800] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The maintenance of mitochondrial genome integrity is a major challenge for cells to sustain energy production by respiration. RECENT ADVANCES Recently, mitochondrial membrane dynamics emerged as a key process contributing to prevent mitochondrial DNA (mtDNA) alterations. Indeed, both fundamental and clinical data suggest that disruption of mitochondrial fusion, related to mutations in the OPA1, MFN2, PINK1, and PARK2 genes, leads to the accumulation of mutations in the mitochondrial genome. CRITICAL ISSUES We discuss here the possibility that mitochondrial fusion acts as a direct mechanism to prevent the generation of altered mtDNA and to eliminate mutated deleterious genomes either by trans-complementation or by mitophagy. FUTURE DIRECTIONS Finally, we conclude this review with a short evolutionary comparison between the mechanisms involved in mitochondrial and bacterial modes of genome distribution and plasticity, highlighting possible common conserved processes required for the maintenance of their genome integrity, which should inspire our future investigations.
Collapse
Affiliation(s)
- Sara Vidoni
- INSERM U1051, Institut des Neurosciences de Montpellier, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | |
Collapse
|
36
|
Jia Z, Wang X, Qin Y, Xue L, Jiang P, Meng Y, Shi S, Wang Y, Qin Mo J, Guan MX. Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet 2013; 22:4064-73. [PMID: 23736300 DOI: 10.1093/hmg/ddt256] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death worldwide. Mitochondrial genetic determinant for the development of CHD remains poorly explored. We report there the clinical, genetic, molecular and biochemical characterization of a four-generation Chinese family with maternally inherited CHD. Thirteen of 32 adult members in this family exhibited variable severity and age-at-onset of CHD. Mutational analysis of their mitochondrial genomes identified the tRNA(Thr) 15927G>A mutation belonging to the Eastern Asian haplogroup B5. The anticipated destabilization of a highly conserved base-pairing (28C-42G) by the 15927G>A mutation affects structure and function of tRNA(Thr). Northern analysis revealed ≈80% decrease in the steady-state level of tRNA(Thr) in the mutant cell lines carrying the 15927G>A mutation. The 15927G>A mutation changed the conformation of tRNA(Thr), as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. In addition, ∼39% reduction in aminoacylated efficiency of tRNA(Thr) was observed in mutant cells derived from this Chinese family. An in vivo mitochondrial protein labeling analysis showed ∼53% reduction in the rate of mitochondrial translation in mutant cells. The impaired mitochondrial protein synthesis leads to defects in overall respiratory capacity or malate/glutamate-promoted respiration or succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-pphenylenediamine/ascorbate-promoted respiration in mutant cells. An increasing production of reactive oxygen species was observed in the mutant cells carrying the 15927G>A mutation. These results provide the direct evidence that the tRNA(Thr) 15927G>A mutation is associated with CHD. Our findings may provide new insights into pathophysiology and intervention targets of this disorder.
Collapse
Affiliation(s)
- Zidong Jia
- The first four authors had equally contributed to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Suski JM, Szabadkai G, Wilczynski G, Wlodarczyk J, Diogo CV, Oliveira PJ, Tauber J, Ježek P, Pronicki M, Duszynski J, Pinton P, Wieckowski MR. Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. Int J Biochem Cell Biol 2012; 45:141-50. [PMID: 22885148 DOI: 10.1016/j.biocel.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
p66Shc is an adaptor protein involved in cell proliferation and differentiation that undergoes phosphorylation at Ser36 in response to oxidative stimuli, consequently inducing a burst of reactive oxygen species (ROS), mitochondrial disruption and apoptosis. Its role during several pathologies suggests that p66Shc mitochondrial signalling can perpetuate a primary mitochondrial defect, thus contributing to the pathophysiology of that condition. Here, we show that in the fibroblasts of neuropathy, ataxia and retinitis pigmentosa (NARP) patients, the p66Shc phosphorylation pathway is significantly induced in response to intracellular oxidative stress related to disrupted ATP synthase activity and mitochondrial membrane hyperpolarisation. We postulate that the increased phosphorylation of p66Shc at Ser36 is partially responsible for further increasing ROS production, resulting in oxidative damage of proteins. Oxidative stress and p66Shc phosphorylation at Ser36 may be mitigated by antioxidant administration or the use of a p66Shc phosphorylation inhibitor. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
|
38
|
Zhou X, Qian Y, Zhang J, Tong Y, Jiang P, Liang M, Dai X, Zhou H, Zhao F, Ji Y, Mo JQ, Qu J, Guan MX. Leber's hereditary optic neuropathy is associated with the T3866C mutation in mitochondrial ND1 gene in three Han Chinese Families. Invest Ophthalmol Vis Sci 2012; 53:4586-94. [PMID: 22577081 DOI: 10.1167/iovs.11-9109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the pathophysiology of Leber's hereditary optic neuropathy (LHON). METHODS Seventy-one subjects from three Chinese families with LHON underwent clinical, genetic, molecular, and biochemical evaluations. Biochemical characterizations included the measurements of the rates of endogenous, substrate-dependent respirations, the adenosine triphosphate (ATP) production and generation of reactive oxygen species using lymphoblastoid cell lines derived from five affected matrilineal relatives of these families and three control subjects. RESULTS Ten of 41 matrilineal relatives exhibited variable severity and age at onset of optic neuropathy. The average age at onset of optic neuropathy in matrilineal relatives of the three families was 5, 11, and 24 years, respectively. Molecular analysis identified the ND1 T3866C (I187T) mutation and distinct sets of polymorphisms belonging to the Eastern Asian haplogroups D4a, M10a, and R, respectively. The I187T mutation is localized at the highly conserved isoleucine at a transmembrane domain of the ND1 polypeptide. The marked reductions in the rate of endogenous, malate/glutamate-promoted and succinate/glycerol-3-phosphate-promoted respiration were observed in mutant cell lines carrying the T3866C mutation. The deficient respiration is responsible for the reduced ATP synthesis and increased generation of reactive oxygen species. CONCLUSIONS Our data convincingly show that the ND1 T3866C mutation leads to LHON. This mutation may be insufficient to produce a clinical phenotype. Other modifier factors may contribute to the phenotypic manifestation of the T3866C mutation. The T3866C mutation should be added to the list of inherited factors for molecular diagnosis of LHON. Thus, our findings may provide new insights into the understanding of pathophysiology and valuable information on the management of LHON.
Collapse
Affiliation(s)
- Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hung WY, Huang KH, Wu CW, Chi CW, Kao HL, Li AFY, Yin PH, Lee HC. Mitochondrial dysfunction promotes cell migration via reactive oxygen species-enhanced β5-integrin expression in human gastric cancer SC-M1 cells. Biochim Biophys Acta Gen Subj 2012; 1820:1102-10. [PMID: 22561002 DOI: 10.1016/j.bbagen.2012.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/19/2012] [Accepted: 04/18/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mitochondrial dysfunction has been shown to promote cancer cell migration. However, molecular mechanism by which mitochondrial dysfunction enhances gastric cancer (GC) cell migration remains unclear. METHODS Mitochondria specific inhibitors, oligomycin and antimycin A, were used to induce mitochondrial dysfunction and to enhance cell migration of human gastric cancer SC-M1 cells. Antioxidant N-acetylcysteine (NAC) was used for evaluating the effect of reactive oxygen species (ROS). Protein expressions of epithelial-to-mesenchymal transition (EMT) markers and the cell-extracellular matrix (ECM) adhesion molecules, the integrin family, were analyzed. A migratory subpopulation of SC-M1 cells (SC-M1-3rd) was selected using a transwell assay for examining the association of mitochondrial bioenergetic function, intracellular ROS content and β5-integrin expression. Clinicopathologic characteristics of β5-integrin expression were analyzed in GC specimens by immunohistochemical staining. RESULTS Treatments with mitochondrial inhibitors elevated mitochondria-generated ROS and cell migration of SC-M1 cells. The protein expression of β5-integrin and cell surface expression of αvβ5-integrin were upregulated, and which were suppressed by NAC. Pretreatments with NAC and anti-αvβ5-integrin neutralizing antibody respectively prevented the mitochondrial dysfunction-induced cell migration. The selected migratory SC-M1-3rd cells showed impaired mitochondrial function, higher mitochondria-generated ROS, and increased β5-integrin expression. The migration ability was also repressed by anti-αvβ5-integrin neutralizing antibody. In clinical specimens, GCs with higher β5-integrin protein expression had more aggressive behavior. In conclusion, mitochondrial dysfunction may lead to GC progression by enhancing migration through mitochondria-generated ROS mediated β5-integrin expression. GENERAL SIGNIFICANCE These results support the role of mitochondrial dysfunction in GC progression.
Collapse
Affiliation(s)
- Wen-Yi Hung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, and Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
41
|
Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:65-106. [DOI: 10.1007/978-1-4614-3573-0_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Pätsi J, Maliniemi P, Pakanen S, Hinttala R, Uusimaa J, Majamaa K, Nyström T, Kervinen M, Hassinen IE. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:312-8. [PMID: 22079202 DOI: 10.1016/j.bbabio.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Collapse
Affiliation(s)
- Jukka Pätsi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Effect of selenite on basic mitochondrial function in human osteosarcoma cells with chronic mitochondrial stress. Mitochondrion 2011; 12:149-55. [PMID: 21742063 DOI: 10.1016/j.mito.2011.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022]
Abstract
Mitochondrial chronic stress that originates from defective mitochondria is implicated in a growing list of human diseases. To enhance understanding of pathophysiology of chronic mitochondrial dysfunction we investigated human osteosarcoma cells with 2 types of chronic stress: corresponding to the mutation in ATP synthase subunit 6 encoded by mtDNA (NARP syndrome-mild stress) and to a total lack of mtDNA (Rho0 cells-heavy stress). We previously found that selenium influenced mitochondrial stress response and lowered ROS production. Therefore, in this study effect of selenite on other mitochondrial parameters was investigated. We showed that presence of selenium improved survival of starved cells, modified organization of mitochondrial network in NARP cybrids and decreased cytosolic calcium level in NARP and Rho0 cells. Selenium did not affect mitochondrial membrane potential, ATP level, activity of ATP synthase and activity of complex II of the respiratory chain.
Collapse
|
44
|
Qian Y, Zhou X, Liang M, Qu J, Guan MX. The altered activity of complex III may contribute to the high penetrance of Leber's hereditary optic neuropathy in a Chinese family carrying the ND4 G11778A mutation. Mitochondrion 2011; 11:871-7. [PMID: 21742061 DOI: 10.1016/j.mito.2011.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/13/2011] [Accepted: 06/24/2011] [Indexed: 02/07/2023]
Abstract
The ND4 G11778A mutation is the most common mitochondrial DNA mutation leading to Leber's hereditary optic neuropathy (LHON). Despite considerable clinical evidences, the modifier role of nuclear background and mitochondrial haplotypes in phenotypic manifestation of LHON remains poorly understood. We investigated the effect of these modifiers on bioenergetics in lymphoblastoid cell lines derived from five affected subjects of one Chinese family carrying the G11778A mutation and five Chinese controls. Significant reductions in the activities of complexes I and III were observed in mutant cell lines from the Chinese family, whereas the mutant cell lines from other families carrying the same mutation exhibited only reduced activity of complex I. The reduced activities of complexes I and III caused remarkably higher reductions of ATP synthesis in mutant cell lines from the Chinese family than those from other families. The deficient respiration increased generation of reactive oxygen species. The defect in complex III activity, likely resulting from the mitochondrial haplotype or nuclear gene alteration, worsens mitochondrial dysfunction caused by the G11778A mutation, thereby causing extremely high penetrance and expressivity of optic neuropathy in this Chinese family. Our data provide the first experimental evidence that altered activity of complex III modulates the phenotypic manifestation of LHON-associated G11778A mutation. Thus, our findings may provide new insights into the pathophysiology of LHON.
Collapse
Affiliation(s)
- Yaping Qian
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
HIV-associated lipodystrophy is clinically characterized by body fat changes including subcutaneous fat loss (lipoatrophy) with or without truncal fat accumulation (lipohypertrophy). Thymidine nucleoside reverse transcriptase inhibitors, stavudine and to a lesser extent zidovudine, are major contributors for lipoatrophy. Drug factors are not clear for lipohypertrophy. Restoration to health with effective viral suppression and weight gain may be factors playing significant roles in lipohypertrophy. Mitochondrial dysfunction and inflammation in subcutaneous adipose tissue are key factors in the pathogenesis of HIV-associated lipoatrophy. The pathogenesis of lipohypertrophy is less well understood. Switching from thymidine nucleoside reverse transcriptase inhibitors restores subcutaneous fat in patients with HIV-associated lipoatrophy, but improvement is slow and limited. Surgical filling cosmetically improves facial lipoatrophy. Exercise and diet may reduce increased visceral adipose tissue. Liposuction may be useful to remove superficial, localized fat accumuli.
Collapse
Affiliation(s)
- Esteban Martínez
- Infectious Diseases Unit, Hospital Clínic-Institut d'Investigaciones Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
Nesbitt V, Whittaker RG, Turnbull DM, McFarland R, Taylor RW. mtDNA disease for the neurologist. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inherited and acquired mutations of mtDNA cause an extraordinary group of diseases that are associated with a diverse panoply of neurological and non-neurological features. These diseases are surprisingly common and are often severely debilitating and readily transmitted through families. Remarkable advances in understanding molecular mechanisms have been made since the first pathogenic mtDNA mutations were identified in 1988, and while widely available genetic techniques have facilitated diagnosis, the complexities of mitochondrial genetics leave the neurologist facing important challenges in recognizing, managing and counseling patients with mtDNA mutations. In this article, we will discuss the clinical phenotypes associated with mtDNA disease, current diagnostic strategies, disease management and genetic counseling, as well as presenting new developments in preventing disease transmission and secondary complications.
Collapse
Affiliation(s)
- Victoria Nesbitt
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Roger G Whittaker
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Douglass M Turnbull
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robert McFarland
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | |
Collapse
|
47
|
McGee KC, Shahmanesh M, Boothby M, Nightingale P, Gathercole LL, Tripathi G, Harte AL, Shojaee-Moradie F, Umpleby AM, Das S, Al-Daghri NM, McTernan PG, Tomlinson JW. Evidence for a shift to anaerobic metabolism in adipose tissue in efavirenz-containing regimens for HIV with different nucleoside backbones. Antivir Ther 2011; 17:495-507. [DOI: 10.3851/imp2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 10/14/2022]
|
48
|
Medikayala S, Piteo B, Zhao X, Edwards JG. Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function. Am J Physiol Cell Physiol 2010; 300:C338-48. [PMID: 21123731 DOI: 10.1152/ajpcell.00248.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction has a significant role in the development and complications of diabetic cardiomyopathy. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) mutations are also associated with different types of cancer and neurodegenerative diseases. The goal of this study was to determine if chronically elevated glucose increase in mtDNA damage contributed to mitochondrial dysfunction and identify the underlying basis for mtDNA damage. H9c2 myotubes (a cardiac-derived cell line) were studied in the presence of 5.5, 16.5, or 33.0 mM glucose for up to 13 days. Tests of mitochondria function (Complex I and IV activity and ATP generation) were all significantly depressed by elevated media glucose. Intramitochondrial superoxide and intracellular superoxide levels were transiently increased during the experimental period. AnnexinV binding (a marker of apoptosis) was significantly increased after 7 and 13 days of high glucose. Thirteen days of elevated glucose significantly increased mtDNA damage globally and across the region encoding for the three subunits of cytochrome oxidase. Using mitochondria isolated from cells chronically exposed to elevated glucose, we observed significant increases in topoisomerase-linked DNA cleavage. Mitochondria-dependent DNA cleavage was significantly exacerbated by H(2)O(2) and that immunoprecipitation of mitochondrial extracts with a mtTOP1 antibody significantly decreased DNA cleavage, indicating that at least part of this activity could be attributed to mtTOP1. We conclude that even mild increases in glucose presentation compromised mitochondrial function as a result of a decline in mtDNA integrity. Separate from a direct impact of oxidative stress on mtDNA, ROS-induced alteration of mitochondrial topoisomerase activity exacerbated and propagated increases in mtDNA damage. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mitochondrial DNA integrity and the well being of the myocardium.
Collapse
Affiliation(s)
- S Medikayala
- Dept. of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
49
|
Visual evoked potentials findings in non-affected subjects from a large Brazilian pedigree of 11778 Leber’s hereditary optic neuropathy. Doc Ophthalmol 2010; 121:147-54. [DOI: 10.1007/s10633-010-9241-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/20/2010] [Indexed: 12/22/2022]
|
50
|
Lebiedzinska M, Karkucinska-Wieckowska A, Giorgi C, Karczmarewicz E, Pronicka E, Pinton P, Duszynski J, Pronicki M, Wieckowski MR. Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:952-60. [DOI: 10.1016/j.bbabio.2010.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 12/24/2022]
|