1
|
Mamedov MD, Milanovsky GE, Malferrari M, Vitukhnovskaya LA, Francia F, Semenov AY, Venturoli G. Trehalose matrix effects on electron transfer in Mn-depleted protein-pigment complexes of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148413. [PMID: 33716033 DOI: 10.1016/j.bbabio.2021.148413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2-7 μs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA- and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ → P680+ electron transfer in about half of the PS II population, wherein the recombination between QA- and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the "water replacement" hypothesis of trehalose matrix biopreservation.
Collapse
Affiliation(s)
- Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Georgy E Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Marco Malferrari
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia
| | - Francesco Francia
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia.
| | - Giovanni Venturoli
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, c/o Department of Physics and Astronomy "Augusto Righi", DIFA, University of Bologna, Bologna, Via Irnerio, 46, Italy.
| |
Collapse
|
2
|
Zaspa AA, Vitukhnovskaya LA, Mamedova AM, Semenov AY, Mamedov MD. Photovoltage generation by photosystem II core complexes immobilized onto a Millipore filter on an indium tin oxide electrode. J Bioenerg Biomembr 2020; 52:495-504. [PMID: 33190172 DOI: 10.1007/s10863-020-09857-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The light-induced functioning of photosynthetic pigment-protein complex of photosystem II (PSII) is linked to the vectorial translocation of charges across the membrane, which results in the formation of voltage. Direct measurement of the light-induced voltage (∆V) generated by spinach oxygen-evolving PSII core complexes adsorbed onto a Millipore membrane filter (MF) on an indium tin oxide (ITO) electrode under continuous illumination has been performed. PSII was shown to participate in electron transfer from water to the ITO electrode, resulting in ∆V generation. No photovoltage was detected in PSII deprived of the water-oxidizing complex. The maximal and stable photoelectric signal was observed in the presence of disaccharide trehalose and 2,6-dichloro-1,4-benzoquinone, acting as a redox mediator between the primary quinone acceptor QA of PSII and electrode surface. Long time preservation of the steady-state photoactivity at room temperature in a simple in design ITO|PSII-MF|ITO system may be related to the retention of water molecules attached to the PSII surface in the presence of trehalose.
Collapse
Affiliation(s)
- Andrey A Zaspa
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Aida M Mamedova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,First Moscow State Medical University, Moscow, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Knox PP, Lukashev EP, Gorokhov VV, Grishanova NP, Paschenko VZ. Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating. PHOTOSYNTHESIS RESEARCH 2019; 139:295-305. [PMID: 29948749 DOI: 10.1007/s11120-018-0529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure-polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC + QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC + QD) complexes.
Collapse
Affiliation(s)
- Peter P Knox
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Evgeny P Lukashev
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir V Gorokhov
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Nadezhda P Grishanova
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Vladimir Z Paschenko
- Department of Biophysics, Biological Faculty of the M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
5
|
Semeraro EF, Giuffrida S, Cottone G, Cupane A. Biopreservation of Myoglobin in Crowded Environment: A Comparison between Gelatin and Trehalose Matrixes. J Phys Chem B 2017; 121:8731-8741. [PMID: 28829129 DOI: 10.1021/acs.jpcb.7b07266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biopreservation by sugar and/or polymeric matrixes is a thoroughly studied research topic with wide technological relevance. Ternary amorphous systems containing both saccharides and proteins are extensively exploited to model the in vivo biopreservation process. With the aim of disentangling the effect of saccharides and polypeptidic crowders (such as gelatin) on the preservation of a model protein, we present here a combined differential scanning calorimetry and UV-vis spectrophotometry study on samples of myoglobin embedded in amorphous gelatin and trehalose + gelatin matrixes at different hydrations, and compare them with amorphous myoglobin-only and myoglobin-trehalose samples. The results point out the different effects of gelatin, which acts mainly as a crowding agent, and trehalose, which acts mainly by direct interaction. Gelatin is able to improve effectively the protein thermal stability at very low hydration; however, it has small effects at medium to high hydration. Consistently, gelatin appears to be more effective than trehalose against massive denaturation in the long time range, while the mixed trehalose + collagen matrix is most effective in preserving protein functionality, outdoing both gelatin-only and trehalose-only matrixes.
Collapse
Affiliation(s)
- Enrico F Semeraro
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| | - Sergio Giuffrida
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| | - Grazia Cottone
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy.,School of Physics, University College of Dublin , Dublin, Ireland
| | - Antonio Cupane
- Dipartimento di Fisica e Chimica, Università di Palermo , Viale delle Scienze 17-18, I-90128 Palermo, Italy
| |
Collapse
|
6
|
Nalepa A, Malferrari M, Lubitz W, Venturoli G, Möbius K, Savitsky A. Local water sensing: water exchange in bacterial photosynthetic reaction centers embedded in a trehalose glass studied using multiresonance EPR. Phys Chem Chem Phys 2017; 19:28388-28400. [DOI: 10.1039/c7cp03942e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulsed EPR spectroscopies and isotope labeled water are applied to detect and quantify the local water in a bacterial reaction center embedded into a trehalose glass.
Collapse
Affiliation(s)
- Anna Nalepa
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica
- Dipartimento di Farmacia e Biotecnologie
- FaBiT
- Università di Bologna
- I-40126 Bologna
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
- Department of Physics
- Free University Berlin
| | - Anton Savitsky
- Max-Planck-Institut für Chemische Energiekonversion
- D-45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
7
|
Shelaev I, Gorka M, Savitsky A, Kurashov V, Mamedov M, Gostev F, Möbius K, Nadtochenko V, Golbeck J, Semenov A. Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/zpch-2016-0860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of
A
1A
•
−
/
A
1
B
•
−
→
F
X
${\rm{A}}_{{\rm{1A}}}^{ \bullet - }/{\rm{A}}_{1{\rm{B}}}^{ \bullet - } \to {{\rm{F}}_{\rm{X}}}$
by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary
P
700
•
+
A
0
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_0^{ \bullet - }$
and the secondary
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the
P
700
•
+
A
1
•
−
${\rm{P}}_{700}^{ \bullet + }{\rm{A}}_1^{ \bullet - }$
was decreased by ~20%. Forward ET from the phylloquinone molecules in the
A
1
A
•
−
${\rm{A}}_{1{\rm{A}}}^{ \bullet - }$
and
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 μs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 μs kinetic phase also contains a small contribution from the recombination between
A
1
B
•
−
${\rm{A}}_{1{\rm{B}}}^{ \bullet - }$
and
P
700
•
+
.
${\rm{P}}_{700}^{ \bullet + }.$
These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix.
Collapse
Affiliation(s)
- Ivan Shelaev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany , Phone: 0049-208-3063555, Fax: 0049-208-3063955
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| | - Fedor Gostev
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - Klaus Möbius
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
| | - John Golbeck
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alexey Semenov
- N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991 Moscow, Russian Federation
- A.N. Belozersky Institute of Physical–Chemical Biology, Moscow State University, Moscow, Leninskie Gory, Moscow 119992, Russian Federation
| |
Collapse
|
8
|
Malferrari M, Savitsky A, Mamedov MD, Milanovsky GE, Lubitz W, Möbius K, Semenov AY, Venturoli G. Trehalose matrix effects on charge-recombination kinetics in Photosystem I of oxygenic photosynthesis at different dehydration levels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1440-1454. [DOI: 10.1016/j.bbabio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
9
|
Malferrari M, Turina P, Francia F, Mezzetti A, Leibl W, Venturoli G. Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy. Photochem Photobiol Sci 2015; 14:238-51. [PMID: 25188921 DOI: 10.1039/c4pp00245h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The photosynthetic reaction center (RC) is a membrane pigment-protein complex that catalyzes the initial charge separation reactions of photosynthesis. Following photoexcitation, the RC undergoes conformational relaxations which stabilize the charge-separated state. Dehydration of the complex inhibits its conformational dynamics, providing a useful tool to gain insights into the relaxational processes. We analyzed the effects of dehydration on the electronic structure of the primary electron donor P, as probed by visible-NIR and light-induced FTIR difference spectroscopy, in RC films equilibrated at different relative humidities r. Previous FTIR and ENDOR spectroscopic studies revealed that P, an excitonically coupled dimer of bacteriochlorophylls, can be switched between two conformations, P866 and P850, which differ in the extent of delocalization of the unpaired electron between the two bacteriochlorophyll moieties (PL and PM) of the photo-oxidized radical P(+). We found that dehydration (at r = 11%) shifts the optical Qy band of P from 866 to 850-845 nm, a large part of the effect occurring already at r = 76%. Such a dehydration weakens light-induced difference FTIR marker bands, which probe the delocalization of charge distribution within the P(+) dimer (the electronic band of P(+) at 2700 cm(-1), and the associated phase-phonon vibrational modes at around 1300, 1480, and 1550 cm(-1)). From the analysis of the P(+) keto C[double bond, length as m-dash]O bands at 1703 and 1713-15 cm(-1), we inferred that dehydration induces a stronger localization of the unpaired electron on PL(+). The observed charge redistribution is discussed in relation to the dielectric relaxation of the photoexcited RC on a long (10(2) s) time scale.
Collapse
Affiliation(s)
- Marco Malferrari
- Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Malferrari M, Francia F, Venturoli G. Retardation of Protein Dynamics by Trehalose in Dehydrated Systems of Photosynthetic Reaction Centers. Insights from Electron Transfer and Thermal Denaturation Kinetics. J Phys Chem B 2015; 119:13600-18. [DOI: 10.1021/acs.jpcb.5b02986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di
Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
- Consorzio Nazionale
Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o
Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
11
|
Palazzo G, Magliulo M, Mallardi A, Angione MD, Gobeljic D, Scamarcio G, Fratini E, Ridi F, Torsi L. Electronic transduction of proton translocations in nanoassembled lamellae of bacteriorhodopsin. ACS NANO 2014; 8:7834-45. [PMID: 25077939 DOI: 10.1021/nn503135y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An organic field-effect transistor (OFET) integrating bacteriorhodopsin (bR) nanoassembled lamellae is proposed for an in-depth study of the proton translocation processes occurring as the bioelectronic device is exposed either to light or to low concentrations of general anesthetic vapors. The study involves the morphological, structural, electrical, and spectroscopic characterizations necessary to assess the functional properties of the device as well as the bR biological activity once integrated into the functional biointerlayer (FBI)-OFET structure. The electronic transduction of the protons phototranslocation is shown as a current increase in the p-type channel only when the device is irradiated with photons known to trigger the bR photocycle, while Raman spectroscopy reveals an associated C═C isomer switch. Notably, higher energy photons bring the cis isomer back to its trans form, switching the proton pumping process off. The investigation is extended also to the study of a PM FBI-OFET exposed to volatile general anesthetics such as halothane. In this case an electronic current increase is seen upon exposure to low, clinically relevant, concentrations of anesthetics, while no evidence of isomer-switching is observed. The study of the direct electronic detection of the two different externally triggered proton translocation effects allows gathering insights into the underpinning of different bR molecular switching processes.
Collapse
Affiliation(s)
- Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "A. Moro" , Via Orabona, 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hill JJ, Shalaev EY, Zografi G. The importance of individual protein molecule dynamics in developing and assessing solid state protein preparations. J Pharm Sci 2014; 103:2605-2614. [PMID: 24867196 DOI: 10.1002/jps.24021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Processing protein solutions into the solid state is a common approach for generating stable amorphous protein mixtures that are suitable for long-term storage. Great care is typically given to protecting the protein native structure during the various drying steps that render it into the amorphous solid state. However, many studies illustrate that chemical and physical degradations still occur in spite of this amorphous material having good glassy properties and it being stored at temperatures below its glass transition temperature (Tg). Because of these persistent issues and recent biophysical studies that have refined the debate ascribing meaning to the molecular dynamical transition temperature and Tg of protein molecules, we provide an updated discussion on the impact of assessing and managing localized, individual protein molecule nondiffusive motions in the context of proteins being prepared into bulk amorphous mixtures. Our aim is to bridge the pharmaceutical studies addressing bulk amorphous preparations and their glassy behavior, with the biophysical studies historically focused on the nondiffusive internal protein dynamics and a protein's activity, along with their combined efforts in assessing the impact of solvent hydrogen-bonding networks on local stability. We also provide recommendations for future research efforts in solid-state formulation approaches.
Collapse
Affiliation(s)
- John J Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98195.
| | | | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222
| |
Collapse
|
13
|
Malferrari M, Nalepa A, Venturoli G, Francia F, Lubitz W, Möbius K, Savitsky A. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR. Phys Chem Chem Phys 2013; 16:9831-48. [PMID: 24358471 DOI: 10.1039/c3cp54043j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a bioprotective disaccharide in some anhydrobiotic organisms.
Collapse
Affiliation(s)
- M Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, via Irnerio 42, I-40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:328-39. [PMID: 23103449 DOI: 10.1016/j.bbabio.2012.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.
Collapse
|
16
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Malferrari M, Francia F, Venturoli G. Coupling between Electron Transfer and Protein–Solvent Dynamics: FTIR and Laser-Flash Spectroscopy Studies in Photosynthetic Reaction Center Films at Different Hydration Levels. J Phys Chem B 2011; 115:14732-50. [DOI: 10.1021/jp2057767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marco Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
18
|
Husu I, Giustini M, Colafemmina G, Palazzo G, Mallardi A. Effects of the measuring light on the photochemistry of the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2011; 108:133-142. [PMID: 21785991 DOI: 10.1007/s11120-011-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.
Collapse
Affiliation(s)
- Ivan Husu
- Dipartimento di Chimica, Università La Sapienza, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Giuffrida S, Panzica M, Giordano FM, Longo A. SAXS study on myoglobin embedded in amorphous saccharide matrices. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:87. [PMID: 21938613 DOI: 10.1140/epje/i2011-11087-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
We report on Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin and met-myoglobin embedded in low hydrated matrices of four different saccharides (trehalose, sucrose, maltose and lactose). Results confirm the already reported occurrence of inhomogeneities, which are not peculiar of trehalose samples, but appear also in maltose and lactose, and in some cases also sucrose, being dependent on the sample hydration and on the presence of sodium dithionite. This behaviour confirms our previous interpretation about the nature of the inhomogeneities, and prompt it as a possible general behaviour for highly concentrated sugar matrices.
Collapse
Affiliation(s)
- S Giuffrida
- Dipartimento di Fisica, Università degli Studi di Palermo, via Archirafi 36, I-90123 Palermo, Italy.
| | | | | | | |
Collapse
|
20
|
Giuffrida S, Troia R, Schiraldi C, D’Agostino A, De Rosa M, Cordone L. MbCO Embedded in Trehalosyldextrin Matrices: Thermal Effects and Protein–Matrix Coupling. FOOD BIOPHYS 2010. [DOI: 10.1007/s11483-010-9197-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Savitsky A, Malferrari M, Francia F, Venturoli G, Möbius K. Bacterial Photosynthetic Reaction Centers in Trehalose Glasses: Coupling between Protein Conformational Dynamics and Electron-Transfer Kinetics as Studied by Laser-Flash and High-Field EPR Spectroscopies. J Phys Chem B 2010; 114:12729-43. [DOI: 10.1021/jp105801q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marco Malferrari
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Francesco Francia
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Giovanni Venturoli
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, c/o Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy, and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
22
|
Longo A, Giuffrida S, Cottone G, Cordone L. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering. Phys Chem Chem Phys 2010; 12:6852-8. [PMID: 20463993 DOI: 10.1039/b926977k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Small Angle X-ray Scattering (SAXS) measurements performed on samples of carboxy-myoglobin (MbCO) embedded in low-water trehalose glasses. Results showed that, in such samples, "low-protein" trehalose-water domains are present, surrounded by a protein-trehalose-water background; such finding is supported by Infrared Spectroscopy (FTIR) measurements. These domains, which do not appear in the absence of the protein and in analogous sucrose systems, preferentially incorporate the incoming water at the onset of rehydration, and disappear following large hydration. This observation suggests that, in organisms under anhydrobiosis, analogous domains could play a buffering role against the daily variations of the atmospheric moisture. The reported results are rationalized by assuming sizably different protein-matrix coupling in trehalose with respect to sucrose, analogous to the one suggested for the photosynthetic reaction centre from Rhodobacter sphaeroides (F. Francia et al., J. Am. Chem. Soc., 2008, 130, 10240-10246).
Collapse
Affiliation(s)
- Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, I-90146, Palermo
| | | | | | | |
Collapse
|
23
|
Bellavia G, Cottone G, Giuffrida S, Cupane A, Cordone L. Thermal denaturation of myoglobin in water--disaccharide matrixes: relation with the glass transition of the system. J Phys Chem B 2009; 113:11543-9. [PMID: 19719261 DOI: 10.1021/jp9041342] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins embedded in glassy saccharide systems are protected against adverse environmental conditions [Crowe et al. Annu. Rev. Physiol. 1998, 60, 73-103]. To further characterize this process, we studied the relationship between the glass transition temperature of the protein-containing saccharide system (T(g)) and the temperature of thermal denaturation of the embedded protein (T(den)). To this end, we studied by differential scanning calorimetry the thermal denaturation of ferric myoglobin in water/disaccharide mixtures containing nonreducing (trehalose, sucrose) or reducing (maltose, lactose) disaccharides. All the samples studied are, at room temperature, liquid systems whose viscosity varies from very low to very large values, depending on the water content. At a high water/saccharide mole ratio, homogeneous glass formation does not occur; regions of glass form, whose T(g) does not vary by varying the saccharide content, and the disaccharide barely affects the myoglobin denaturation temperature. At a suitably low water/saccharide mole ratio, by lowering the temperature, the systems undergo transition to the glassy state whose T(g) is determined by the water content; the Gordon-Taylor relationship between T(g) and the water/disaccharide mole ratio is obeyed; and T(den) increases by decreasing the hydration regardless of the disaccharide, such effect being entropy-driven. The presence of the protein was found to lower the T(g). Furthermore, for nonreducing disaccharides, plots of T(den) vs T(g) give linear correlations, whereas for reducing disaccharides, data exhibit an erratic behavior below a critical water/disaccharide ratio. We ascribe this behavior to the likelihood that in the latter samples, proteins have undergone Maillard reaction before thermal denaturation.
Collapse
Affiliation(s)
- Giuseppe Bellavia
- Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo and CNISM, Via Archirafi 36, Palermo, Italy I-90123
| | | | | | | | | |
Collapse
|
24
|
Francia F, Malferrari M, Sacquin-Mora S, Venturoli G. Charge Recombination Kinetics and Protein Dynamics in Wild Type and Carotenoid-less Bacterial Reaction Centers: Studies in Trehalose Glasses. J Phys Chem B 2009; 113:10389-98. [DOI: 10.1021/jp902287y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Sophie Sacquin-Mora
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, 40126 Bologna, Italy, Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 75005 Paris, France, and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Bologna, Italy
| |
Collapse
|
25
|
Ginet N, Lavergne J. Conformational control of the Q(A) to Q(B) electron transfer in bacterial reaction centers: evidence for a frozen conformational landscape below -25 degrees C. J Am Chem Soc 2008; 130:9318-31. [PMID: 18588291 DOI: 10.1021/ja076504f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The competition between the P(+)Q(A)(-) --> PQ(A) charge recombination (P, bacteriochlorophyll pair acting as primary photochemical electron donor) and the electron transfer to the secondary quinone acceptor Q(A)(-)Q(B) --> Q(A)Q(B)(-) (Q(A) and Q(B), primary and secondary electron accepting quinones) was investigated in chromatophores of Rb. capsulatus, varying the temperature down to -65 degrees C. The analysis of the flash-induced pattern for the formation of P(+)Q(A)Q(B)(-) shows that the diminished yield, when lowering the temperature, is not due to a homogeneous slowing of the rate constant k(AB) of the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer but to a distribution of conformations that modulate the electron transfer rate over more than 3 orders of magnitude. This distribution appears "frozen", as no dynamic redistribution was observed over time ranges > 10 s (below -25 degrees C). The kinetic pattern was analyzed to estimate the shape of the distribution of k(AB), showing a bell-shaped band on the high rate side and a fraction of "blocked" reaction centers (RCs) with very slow k(AB). When the temperature is lowered, the high rate band moves to slower rate regions and the fraction of blocked RCs increases at the expense of the high rate band. The RCs that recombine from the P(+)Q(A)Q(B)(-) state appear temporarily converted to a state with rapid k(AB), indicating that the stabilized state described by Kleinfeld et al. (Biochemistry 1984, 23, 5780-5786) is still accessible at -60 degrees C.
Collapse
Affiliation(s)
- Nicolas Ginet
- Laboratoire de Bioénergétique Cellulaire, iBEB, UMR 6191, CEA/CNRS and Université Aix-Marseille II, CEA Cadarache, 13108, Saint Paul lez Durance, France.
| | | |
Collapse
|
26
|
D'Alfonso L, Collini M, Cannone F, Chirico G, Campanini B, Cottone G, Cordone L. GFP-mut2 proteins in trehalose-water matrixes: spatially heterogeneous protein-water-sugar structures. Biophys J 2007; 93:284-93. [PMID: 17416616 PMCID: PMC1914445 DOI: 10.1529/biophysj.106.090621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations on the properties of nanoenvironments around single-GFP-mut2 proteins in trehalose-water matrixes. Single-GFPmut2 molecules embedded in thin trehalose-water films were characterized in terms of their fluorescence brightness, bleaching dynamics, excited state lifetime, and fluorescence polarization. For each property, sets of approximately 100-150 single molecules have been investigated as a function of trehalose content and hydration. Three distinct and interconverting families of proteins have been found which differ widely in terms of bleaching dynamics, brightness, and fluorescence polarization, whose relative populations sizably depend on sample hydration. The reported results evidence the simultaneous presence of different protein-trehalose-water nanostructures whose rigidity increases by lowering the sample hydration. Such spatial inhomogeneity is in line with the well-known heterogeneous dynamics in supercooled fluids and in nonsolid carbohydrate glasses and gives a pictorial representation of the sharp, sudden reorganization of the above structures after uptake <==>release of water molecules.
Collapse
Affiliation(s)
- Laura D'Alfonso
- Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Mallardi A, Giustini M, Lopez F, Dezi M, Venturoli G, Palazzo G. Functionality of Photosynthetic Reaction Centers in Polyelectrolyte Multilayers: Toward an Herbicide Biosensor. J Phys Chem B 2007; 111:3304-14. [PMID: 17388474 DOI: 10.1021/jp068385g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial reaction center (RC), a membrane photosynthetic protein, has been adsorbed onto a glass surface by alternating deposition with the cationic polymer poly(dimethyldiallylammonium chloride) (PDDA) obtaining as an end result an ordinate polyelectrolyte multilayer (PEM) where the protein retains its integrity and photoactivity over a period of several months. Such a system has been characterized from the functional point of view by checking the protein photoactivity at different hydration conditions, from extensive drought to full hydration. The kinetic analysis of charge recombination indicates that incorporation of RCs into dehydrated PEM hinders the conformational dynamics gating QA- to QB electron-transfer leaving unchanged the protein relaxation that stabilizes the primary charge separated state P+QA-. The herbicide-induced inhibition of the QB activity was studied in some detail. By dipping the PEM in herbicide solutions for short times, kinetics of herbicide binding and release have been determined; binding isotherms have been studied using PEM immersed in herbicide solution. QB functionality of RC has been restored by rinsing the PEM with water, thus allowing the reuse of the same sample. This last point has been exploited to design a simple optical biosensor for herbicides. A suitable kinetic model has been proposed to describe the interplay between forward and back electron-transfer processes upon continuous illumination, and the use of the PDDA-RC multilayers in herbicide bioassays was successfully tested.
Collapse
Affiliation(s)
- Antonia Mallardi
- Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Forti G, Agostiano A, Barbato R, Bassi R, Brugnoli E, Finazzi G, Garlaschi FM, Jennings RC, Melandri BA, Trotta M, Venturoli G, Zanetti G, Zannoni D, Zucchelli G. Photosynthesis research in Italy: a review. PHOTOSYNTHESIS RESEARCH 2006; 88:211-40. [PMID: 16755326 DOI: 10.1007/s11120-006-9054-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/24/2006] [Indexed: 05/10/2023]
Abstract
This historical review was compiled and edited by Giorgio Forti, whereas the other authors of the different sections are listed alphabetically after his name, below the title of the paper; they are also listed in the individual sections. This review deals with the research on photosynthesis performed in several Italian laboratories during the last 50 years; it includes research done, in collaboration, at several international laboratories, particularly USA, UK, Switzerland, Hungary, Germany, France, Finland, Denmark, and Austria. Wherever pertinent, references are provided, especially to other historical papers in Govindjee et al. [Govindjee, Beatty JT, Gest H, Allen JF (eds) (2005) Discoveries in Photosynthesis. Springer, Dordrecht]. This paper covers the physical and chemical events starting with the absorption of a quantum of light by a pigment molecule to the conversion of the radiation energy into the stable chemical forms of the reducing power and of ATP. It describes the work done on the structure, function and regulation of the photosynthetic apparatus in higher plants, unicellular algae and in photosynthetic bacteria. Phenomena such as photoinhibition and the protection from it are also included. Research in biophysics of photosynthesis in Padova (Italy) is discussed by G.M. Giacometti and G. Giacometti (2006).
Collapse
Affiliation(s)
- Giorgio Forti
- Istituto di Biofisica del CNR, Sezione di Milano e Dipartimento di Biologia dell'Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Giuffrida S, Cottone G, Cordone L. Role of solvent on protein-matrix coupling in MbCO embedded in water-saccharide systems: a Fourier transform infrared spectroscopy study. Biophys J 2006; 91:968-80. [PMID: 16714349 PMCID: PMC1563748 DOI: 10.1529/biophysj.106.081927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300-20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo and CNISM, I-90123 Palermo, Italy
| | | | | |
Collapse
|
30
|
Giustini M, Castelli F, Husu I, Giomini M, Mallardi A, Palazzo G. Influence of Cardiolipin on the Functionality of the QA Site of the Photosynthetic Bacterial Reaction Center. J Phys Chem B 2005; 109:21187-96. [PMID: 16853745 DOI: 10.1021/jp054104d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of cardiolipin on the functionality of the Q(A) site of a photosynthetic reaction center (RC) was studied in RCs from the purple non-sulfur bacterium Rhodobacter sphaeroides by means of time-resolved absorbance measurements. The binding of the ubiquinone-10 to the Q(A) site of the RC embedded in cardiolipin or lecithin liposomes has been followed at different temperatures and phospholipid loading. A global fit of the experimental data allowed us to get quite reliable values of the thermodynamic parameters joined to the binding process. The presence of cardiolipin does not affect the affinity of the Q(A) site for ubiquinone but has a marked influence on the rate of P+QA(-) --> PQA electron transfer. The P+QA(-) charge recombination kinetics has been examined in liposomes made of cardiolipin/lecithin mixtures and in detergent (DDAO) micelles doped with cardiolipin. The electron-transfer rate constant increases upon cardiolipin loading. It appears that the main effect of cardiolipin on the electron transfer can be ascribed to a destabilization of the charge-separated state. Results obtained in micelles and vesicles follow the same titration curve when cardiolipin concentration evaluated with respect to the apolar phase is used as a relevant variable. The dependence of the P+QA(-) recombination rate on cardiolipin loading suggests two classes of binding sites. In addition to a high-affinity site (compatible with previous crystallographic studies), a cooperative binding, involving about four cardiolipin molecules, takes place at high cardiolipin loading.
Collapse
Affiliation(s)
- Mauro Giustini
- Dipartimento di Chimica, Università La Sapienza, via Orabona 4, I-00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|