1
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Poddubnyy VV, Glebov IO, Eremin VV. Protein Vibration Effects on Primary Electron Transfer Dynamics in Rhodobacter sphaeroides Photosynthetic Reaction Center. J Phys Chem B 2017; 121:10639-10647. [PMID: 29095621 DOI: 10.1021/acs.jpcb.7b09321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary electron transfer (ET) in the chromophore subsystem in a bacterial reaction center (RC) is a unique process, and is coupled with the protein motion, which, like the ET, is caused by photoexcitation of these chromophores. ET is also coupled with dissipative processes, which are caused by interaction between chromophores and vibrations of its surrounding protein. We propose a new dynamics calculation method that accounts for both these effects of protein vibrations. Within this method, the photoinduced protein motion causes an addition of coherent component to the ET rate. We performed dynamics calculation using this method and parameters, which were determined from the ab initio wave functions of the chromophore subsystem and protein normal vibrational modes. We showed that it is this protein motion that causes oscillations in the time-dependencies of stimulated emission intensities and of absorption at 1020 nm. Moreover, the latter oscillations are related to the coherent component of the ET rate.
Collapse
Affiliation(s)
- Vladimir V Poddubnyy
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| | - Ilya O Glebov
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| | - Vadim V Eremin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia 119991
| |
Collapse
|
3
|
On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1925-1934. [DOI: 10.1016/j.bbabio.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/31/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022]
|
4
|
Faries KM, Kressel LL, Dylla NP, Wander MJ, Hanson DK, Holten D, Laible PD, Kirmaier C. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:150-159. [DOI: 10.1016/j.bbabio.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
|
5
|
Kressel L, Faries KM, Wander MJ, Zogzas CE, Mejdrich RJ, Hanson DK, Holten D, Laible PD, Kirmaier C. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1892-1903. [DOI: 10.1016/j.bbabio.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 10/25/2022]
|
6
|
Frolov D, Marsh M, Crouch LI, Fyfe PK, Robert B, van Grondelle R, Hadfield A, Jones MR. Structural and Spectroscopic Consequences of Hexacoordination of a Bacteriochlorophyll Cofactor in the Rhodobacter sphaeroides Reaction Center,. Biochemistry 2010; 49:1882-92. [DOI: 10.1021/bi901922t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dmitrij Frolov
- Department of Physics and Astronomy, Free University of Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - May Marsh
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Lucy I. Crouch
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Paul K. Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Bruno Robert
- Service de Biophysique des Fonctions Membranaires, DBJC/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Free University of Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Andrea Hadfield
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
7
|
Wróbel D, Dudkowiak A, Goc J. Fluorescence Spectroscopy in Optoelectronics, Photomedicine, and Investigation of Biomolecular Systems. REVIEWS IN FLUORESCENCE 2008 2010. [DOI: 10.1007/978-1-4419-1260-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Multipulse spectroscopy on the wild-type and YM210W Bacterial Reaction Centre uncovers a new intermediate state in the special pair excited state. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:9-30. [PMID: 32689211 DOI: 10.1071/fp05095] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/18/2005] [Indexed: 05/24/2023]
Abstract
Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O-J-I-P (O-I1-I2-P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1-28]. In addition to 'old' concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), 'new' approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.
Collapse
Affiliation(s)
- Dušan Lazár
- Palacký University, Faculty of Science, Department of Experimental Physics, Laboratory of Biophysics, tř. Svobody 26, 771 46 Olomouc, Czech Republic. Email
| |
Collapse
|
11
|
Wakeham MC, Jones MR. Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem Soc Trans 2005; 33:851-7. [PMID: 16042613 DOI: 10.1042/bst0330851] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purple bacterial reaction centre uses light energy to separate charge across the cytoplasmic membrane, reducing ubiquinone and oxidizing a c-type cytochrome. The protein possesses a macroscopic structural two-fold symmetry but displays a strong functional asymmetry, with only one of two available membrane-spanning branches of cofactors (the so-called A-branch) being used to catalyse photochemical charge separation. The factors underlying this functional asymmetry have been the subject of study for many years but are still not fully understood. Site-directed mutagenesis has been partially successful in rerouting electron transfer along the normally inactive B-branch, allowing comparison of the kinetics of equivalent electron transfer reactions on the two branches. Both the primary and secondary electron transfer steps on the B-branch appear to be considerably slower than their A-branch counterparts. The effectiveness of different mutations in rerouting electron transfer along the B-branch of cofactors is discussed.
Collapse
Affiliation(s)
- M C Wakeham
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|