1
|
Feregrino-Mondragón RD, Santiago-Martínez MG, Silva-Flores M, Encalada R, Reyes-Prieto A, Rodríguez-Zavala JS, Peña-Ocaña BA, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans. Arch Biochem Biophys 2023:109667. [PMID: 37327962 DOI: 10.1016/j.abb.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.
Collapse
Affiliation(s)
| | - Michel Geovanni Santiago-Martínez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Department of Molecular and Cell Biology, The University of Connecticut, Storrs, 06269, Connecticut, USA
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Adrián Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
| |
Collapse
|
2
|
Takahashi Y, Shimamoto K, Toyokawa C, Suzuki K, Osanai T. Gravity sedimentation of eukaryotic algae Euglena gracilis accelerated by ethanol cultivation. Appl Microbiol Biotechnol 2023; 107:3021-3032. [PMID: 36941437 DOI: 10.1007/s00253-023-12476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Euglena gracilis (E. gracilis) is a unicellular microalga with various applications in medicine, agriculture, aquaculture, health supplement, and jet fuel production. Euglena possibly solves population growth and exhaustion of fossil resources. Efficient cell harvesting is needed for the industry, and the gravity sedimentation method is low cost and does not require any equipment, although it has low efficiency. This study showed that the gravity sedimentation of E. gracilis cells is improved by cultivation in the presence of ethanol (EtOH). The gravity sedimentation of E. gracilis cells cultivated under 0.5% or 1.0% EtOH conditions was faster than that cultivated without EtOH. The mean calculated cell diameter was also found to be largest in cells cultivated under 0.5% or 1.0% EtOH conditions compared to that in cells cultivated without EtOH. Intracellular paramylon content, cell shapes, and motility differed between cells cultivated under 0.5% or 1.0% EtOH conditions and in the absence of EtOH. The results suggest that E. gracilis cultivation with EtOH leads to increased cell productivity, paramylon production, and efficient cell harvesting. KEY POINTS: • Euglena gracilis is an edible microalga producing value-added metabolites. • Ethanol addition upregulates E. gracilis growth and paramylon accumulation. • Gravity sedimentation is accelerated by ethanol-grown E. gracilis cells.
Collapse
Affiliation(s)
- Yu Takahashi
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kosuke Shimamoto
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Chihana Toyokawa
- euglena Co., Ltd., 5-33-1 Shiba, Minato-Ku, Tokyo, 108-0014, Japan
- RIKEN, 1-7-22, Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., 5-33-1 Shiba, Minato-Ku, Tokyo, 108-0014, Japan
- RIKEN, 1-7-22, Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
3
|
Biryukova EN, Arinbasarova AY, Medentsev AG. L-Lactate Oxidase Systems of Microorganisms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Feregrino-Mondragón RD, Vega-Segura A, Sánchez-Thomas R, Silva-Flores M, Rodríguez-Zavala JS, Marín-Hernández Á, Pérez-Torres I, Torres-Márquez ME, Moreno-Sánchez R, Jasso-Chávez R. The essential role of mitochondria in the consumption of waste-organic matter and production of metabolites of biotechnological interest in Euglena gracilis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Kim S, Lee D, Lim D, Lim S, Park S, Kang C, Yu J, Lee T. Paramylon production from heterotrophic cultivation of Euglena gracilis in two different industrial byproducts: Corn steep liquor and brewer's spent grain. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Tomita Y, Yoshioka K, Iijima H, Nakashima A, Iwata O, Suzuki K, Hasunuma T, Kondo A, Hirai MY, Osanai T. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions. Front Microbiol 2016; 7:2050. [PMID: 28066371 PMCID: PMC5174102 DOI: 10.3389/fmicb.2016.02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism.
Collapse
Affiliation(s)
- Yuko Tomita
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | | | | | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji UniversityKawasaki, Japan; RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
8
|
Santiago-Martínez MG, Lira-Silva E, Encalada R, Pineda E, Gallardo-Pérez JC, Zepeda-Rodriguez A, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 288:104-112. [PMID: 25698571 DOI: 10.1016/j.jhazmat.2015.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.
Collapse
Affiliation(s)
| | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | - Erika Pineda
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | | | | | | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico
| | | |
Collapse
|
9
|
Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J Bioenerg Biomembr 2011; 43:519-30. [DOI: 10.1007/s10863-011-9373-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/17/2011] [Indexed: 11/24/2022]
|
10
|
Jasso-Chávez R, Pacheco-Rosales A, Lira-Silva E, Gallardo-Pérez JC, García N, Moreno-Sánchez R. Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:329-338. [PMID: 20851473 DOI: 10.1016/j.aquatox.2010.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 05/29/2023]
Abstract
To assess the toxic effect of Cr on energy metabolism, heterotrophic Euglena gracilis was grown in a medium that prompts high yield biomass and in the presence of different Cr(VI) or Cr(III) concentrations. The cell growth IC₅₀ value was 12 and >250μM for Cr(VI) and Cr(III), respectively; in these cells chromium was accumulated and a fraction compartmentalized into mitochondria, and synthesis of cysteine and glutathione was induced. Respiration of control isolated mitochondria was strongly inhibited by added Cr(VI) or Cr(III) with L-lactate or succinate as substrates. In turn, cellular and mitochondrial respiration, respiratory Complexes I, III and IV, glycolysis and cytosolic NAD(+)-alcohol and -lactate dehydrogenases from cells cultured with Cr(VI) were significantly lower than control, whereas AOX and external NADH dehydrogenase activities were unaltered or increased, respectively. Addition of Cr(VI) or Cr(III) to isolated mitochondria or cytosol from control- or Cr(VI)-grown cells induced inhibition of respiration, respiratory Complexes III, IV and AOX, and glycolytic pyruvate kinase; whereas Complex I, external NADH dehydrogenase, and other glycolytic enzymes were unaffected. Protein contents of mitochondrial Complexes I, III, IV and V, and ANT were diminished in Cr(VI)-grown cells. Decreased respiration and glycolysis induced by Cr(VI) resulted in lower cellular ATP content. Results suggested that Cr(VI) cytotoxicity altered gene expression (as widely documented) and hence enzyme content, and induced oxidative stress, but it was also related with direct enzyme inhibition; Cr(III) was also cytotoxic although at higher concentrations. These findings establish new paradigms for chromium toxicity: Cr(VI) direct enzyme inhibition and non-innocuous external Cr(III) toxicity.
Collapse
Affiliation(s)
- Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, México D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
11
|
Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 2010; 109:2160-72. [PMID: 20854454 DOI: 10.1111/j.1365-2672.2010.04848.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To analyse the production of different metabolites by dark-grown Euglena gracilis under conditions found to render high cell growth. METHODS AND RESULTS The combination of glutamate (5 g l(-1) ), malate (2 g l(-1) ) and ethanol (10 ml l(-1) ) (GM + EtOH); glutamate (7·15 g l(-1) ) and ethanol (10 ml l(-1) ); or malate (8·16 g l(-1) ), glucose (10·6 g l(-1) ) and NH(4) Cl (1·8 g l(-1) ) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6-fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α-tocopherol after 120 h identified by LC-MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)](-1) , respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)(-1) . For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP-HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. CONCLUSIONS Dark-grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α-tocopherol and paramylon. SIGNIFICANCE AND IMPACT OF THE STUDY By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α-tocopherol and some amino acids. The concentrations of α-tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio-molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.
Collapse
Affiliation(s)
- J S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México D.F., México.
| | | | | | | |
Collapse
|
12
|
Chromium uptake, retention and reduction in photosynthetic Euglena gracilis. Arch Microbiol 2009; 191:431-40. [DOI: 10.1007/s00203-009-0469-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
|
13
|
Rodríguez-Zavala JS, García-García JD, Ortiz-Cruz MA, Moreno-Sánchez R. Molecular mechanisms of resistance to heavy metals in the protist Euglena gracilis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:1365-78. [PMID: 17680475 DOI: 10.1080/10934520701480326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The biochemical mechanisms of resistance to several heavy metals, which are associated with their accumulation (binding by high-affinity chelating molecules such as thiol-compounds together with their compartmentalization into organelles), are analyzed for the photosynthetic, free-living protist Euglena gracilis. The complete understanding of these mechanisms may facilitate the rational design of strategies for bioremediation of heavy metal polluted water and soil systems.
Collapse
|
14
|
Rodríguez-Zavala JS, Ortiz-Cruz MA, Moreno-Sanchez R. Characterization of an Aldehyde Dehydrogenase from Euglena gracilis. J Eukaryot Microbiol 2006; 53:36-42. [PMID: 16441583 DOI: 10.1111/j.1550-7408.2005.00070.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free-living protist Euglena gracilis showed an enhanced growth when cultured in the dark with high concentrations of ethanol as carbon source. In a medium containing glutamate/malate plus 1% ethanol, E. gracilis reached a density of 3 x 10(7) cells/ml after 100 h of culture, which was 5 times higher than that attained with glutamate/malate or ethanol separately. This observation suggested the involvement of a highly active aldehyde dehydrogenase in the metabolism of ethanol. Purification of the E. gracilis aldehyde dehydrogenase from the mitochondrial fraction by affinity chromatography yielded an enrichment of 34 times and recovery of 33% of the total mitochondrial activity. SDS-PAGE and molecular exclusion chromatography revealed a native tetrameric protein of 160 kDa. Kinetic analysis showed Km values of 5 and 50 microM for propionaldehyde and NAD(+), respectively, and a Vm value of 1,300 nmol (min x mg protein)(-1). NAD(+) and NADH stimulated the esterase activity of the purified aldehyde dehydrogenase. The present data indicated that the E. gracilis aldehyde dehydrogenase has kinetic and structural properties similar to those of human aldehyde dehydrogenases class 1 and 2.
Collapse
Affiliation(s)
- Jose S Rodríguez-Zavala
- Departamento de Bioquímica. Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México D.F. 14080, México.
| | | | | |
Collapse
|
15
|
Castro-Guerrero NA, Jasso-Chávez R, Moreno-Sánchez R. Physiological role of rhodoquinone in Euglena gracilis mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1710:113-21. [PMID: 16325648 DOI: 10.1016/j.bbabio.2005.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/21/2005] [Accepted: 10/11/2005] [Indexed: 11/24/2022]
Abstract
Rhodoquinone (RQ) participates in fumarate reduction under anaerobiosis in some bacteria and some primitive eukaryotes. Euglena gracilis, a facultative anaerobic protist, also possesses significant rhodoquinone-9 (RQ9) content. Growth under low oxygen concentration induced a decrease in cytochromes and ubiquinone-9 (UQ9) content, while RQ9 and fumarate reductase (FR) activity increased. However, in cells cultured under aerobic conditions, a relatively high RQ9 content was also attained together with significant FR activity. In addition, RQ9 purified from E. gracilis mitochondria was able to trigger the activities of cytochrome bc1 complex, bc1-like alternative component and alternative oxidase, although with lower efficiency (higher Km, lower Vm) than UQ9. Moreover, purified E. gracilis mitochondrial NAD+-independent D-lactate dehydrogenase (D-iLDH) showed preference for RQ9 as electron acceptor, whereas L-iLDH and succinate dehydrogenase preferred UQ9. These results indicated a physiological role for RQ9 under aerobiosis and microaerophilia in E. gracilis mitochondria, in which RQ9 mediates electron transfer between D-iLDH and other respiratory chain components, including FR.
Collapse
Affiliation(s)
- Norma A Castro-Guerrero
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México 14080, D.F., México.
| | | | | |
Collapse
|