1
|
Magdaong NCM, Buhrmaster JC, Faries KM, Liu H, Tira GA, Lindsey JS, Hanson DK, Holten D, Laible PD, Kirmaier C. In Situ, Protein-Mediated Generation of a Photochemically Active Chlorophyll Analogue in a Mutant Bacterial Photosynthetic Reaction Center. Biochemistry 2021; 60:1260-1275. [PMID: 33835797 DOI: 10.1021/acs.biochem.1c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All possible natural amino acids have been substituted for the native LeuL185 positioned near the B-side bacteriopheophytin (HB) in the bacterial reaction center (RC) from Rhodobacter sphaeroides. Additional mutations that enhance electron transfer to the normally inactive B-side cofactors are present. Approximately half of the isolated RCs with Glu at L185 contain a magnesium chlorin (CB) in place of HB. The chlorin is not the common BChl a oxidation product 3-desvinyl-3-acetyl chlorophyll a with a C-C bond in ring D and a C═C bond in ring B but has properties consistent with reversal of these bond orders, giving 17,18-didehydro BChl a. In such RCs, charge-separated state P+CB- forms in ∼5% yield. The other half of the GluL185-containing RCs have a bacteriochlorophyll a (BChl a) denoted βB in place of HB. Residues His, Asp, Asn, and Gln at L185 yield RCs with ≥85% βB in the HB site, while most other amino acids result in RCs that retain HB (≥95%). To the best of our knowledge, neither bacterial RCs that harbor five BChl a molecules and one chlorophyll analogue nor those with six BChl a molecules have been reported previously. The finding that altering the local environment within a cofactor binding site of a transmembrane complex leads to in situ generation of a photoactive chlorin with an unusual ring oxidation pattern suggests new strategies for amino acid control over pigment type at specific sites in photosynthetic proteins.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - James C Buhrmaster
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Liu J, Mantell J, Di Bartolo N, Jones MR. Mechanisms of Self-Assembly and Energy Harvesting in Tuneable Conjugates of Quantum Dots and Engineered Photovoltaic Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804267. [PMID: 30569587 DOI: 10.1002/smll.201804267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Photoreaction centers facilitate the solar energy transduction at the heart of photosynthesis and there is increasing interest in their incorporation into biohybrid devices for solar energy conversion, sensing, and other applications. In this work, the self-assembly of conjugates between engineered bacterial reaction centers (RCs) and quantum dots (QDs) that act as a synthetic light harvesting system is described. The interface between protein and QD is provided by a polyhistidine tag that confers a tight and specific binding and defines the geometry of the interaction. Protein engineering that changes the pigment composition of the RC is used to identify Förster resonance energy transfer as the mechanism through which QDs can drive RC photochemistry with a high energy transfer efficiency. A thermodynamic explanation of RC/QD conjugation based on a multiple/independent binding model is provided. It is also demonstrated that the presence of multiple binding sites affects energy coupling not only between RCs and QDs but also among the bound RCs themselves, effects which likely stem from restricted RC dynamics at the QD surface in denser conjugates. These findings are readily transferrable to many other conjugate systems between proteins or combinations of proteins and other nanomaterials.
Collapse
Affiliation(s)
- Juntai Liu
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Judith Mantell
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Natalie Di Bartolo
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Michael R Jones
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
3
|
Kamran M, Friebe VM, Delgado JD, Aartsma TJ, Frese RN, Jones MR. Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit. Nat Commun 2015; 6:6530. [PMID: 25751412 PMCID: PMC4366537 DOI: 10.1038/ncomms7530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein–cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored. Photosynthetic reaction centres have been proposed for applications in bioelectronics. Here, the authors examine electron transport through the reaction centre from R. sphaeroides using conductive AFM, observing asymmetric conductance along only one cofactor wire under an applied bias.
Collapse
Affiliation(s)
- Muhammad Kamran
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Vincent M Friebe
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Juan D Delgado
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Raoul N Frese
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:366-74. [DOI: 10.1016/j.bbabio.2013.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
5
|
Saer RG, Hardjasa A, Rosell FI, Mauk AG, Murphy MEP, Beatty JT. Role of Rhodobacter sphaeroides Photosynthetic Reaction Center Residue M214 in the Composition, Absorbance Properties, and Conformations of HA and BA Cofactors. Biochemistry 2013; 52:2206-17. [DOI: 10.1021/bi400207m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rafael G. Saer
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Amelia Hardjasa
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Federico I. Rosell
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - A. Grant Mauk
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - Michael E. P. Murphy
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| | - J. Thomas Beatty
- Department
of Microbiology and Immunology and ‡Department of Biochemistry and Molecular Biology
and Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver,
BC, Canada V6T 1Z3
| |
Collapse
|
6
|
|
7
|
Carter B, Boxer SG, Holten D, Kirmaier C. Photochemistry of a Bacterial Photosynthetic Reaction Center Missing the Initial Bacteriochlorophyll Electron Acceptor. J Phys Chem B 2012; 116:9971-82. [DOI: 10.1021/jp305276m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett Carter
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California
94305-5080, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri
63130-4899, United States
| |
Collapse
|
8
|
Neupane B, Jaschke P, Saer R, Beatty JT, Reppert M, Jankowiak R. Electron Transfer in Rhodobacter sphaeroides Reaction Centers Containing Zn-Bacteriochlorophylls: A Hole-Burning Study. J Phys Chem B 2012; 116:3457-66. [DOI: 10.1021/jp300304r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paul Jaschke
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Rafael Saer
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - J. Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | | |
Collapse
|
9
|
Faries KM, Kressel LL, Wander MJ, Holten D, Laible PD, Kirmaier C, Hanson DK. High throughput engineering to revitalize a vestigial electron transfer pathway in bacterial photosynthetic reaction centers. J Biol Chem 2012; 287:8507-14. [PMID: 22247556 DOI: 10.1074/jbc.m111.326447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization.
Collapse
Affiliation(s)
- Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein. Arch Biochem Biophys 2011; 505:160-70. [DOI: 10.1016/j.abb.2010.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/23/2022]
|
12
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. Identification of the intermediate charge-separated state P+betaL- in a leucine M214 to histidine mutant of the Rhodobacter sphaeroides reaction center using femtosecond midinfrared spectroscopy. Biophys J 2009; 96:4956-65. [PMID: 19527655 DOI: 10.1016/j.bpj.2009.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022] Open
Abstract
Energy and electron transfer in a Leu M214 to His (LM214H) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated by applying time-resolved visible pump/midinfrared probe spectroscopy at room temperature. This mutant replacement of the Leu at position M214 resulted in the incorporation of a bacteriochlorophyll (BChl) in place of the native bacteriopheophytin in the L-branch of cofactors (denoted betaL). Purified LM214H RCs were excited at 600 nm (unselective excitation), at 800 nm (direct excitation of the monomeric BChl cofactors B(L) and B(M)), and at 860 nm (direct excitation of the primary donor (P) BChl pair (P(L)/P(M))). Absorption changes associated with carbonyl (C=O) stretch vibrational modes (9-keto, 10a-ester, and 2a-acetyl) of the cofactors and of the protein were recorded in the region between 1600 cm(-1) and 1770 cm(-1), and the data were subjected to both a sequential analysis and a simultaneous target analysis. After photoexcitation of the LM214H RC, P* decayed on a timescale of approximately 6.3 ps to P+BL-. The decay of P+BL- occurred with a lifetime of approximately 2 ps, approximately 3 times slower than that observed in wild-type and R-26 RCs (approximately 0.7 ps). Further electron transfer to the betaL BChl resulted in formation of the P+betaL- state, and its infrared absorbance difference spectrum is reported for the first time, to our knowledge. The fs midinfrared spectra of P+BL- and P+betaL- showed clear differences related to the different environments of the two BChls in the mutant RC.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Williams JC, Allen JP. Directed Modification of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|