1
|
Podolich O, Kukharenko O, Zaets I, Orlovska I, Palchykovska L, Zaika L, Sysoliatin S, Zubova G, Reva O, Galkin M, Horid'ko T, Kosiakova H, Borisova T, Kravchenko V, Skoryk M, Kremenskoy M, Ghosh P, Barh D, Góes-Neto A, Azevedo V, de Vera JP, Kozyrovska N. Fitness of Outer Membrane Vesicles From Komagataeibacter intermedius Is Altered Under the Impact of Simulated Mars-like Stressors Outside the International Space Station. Front Microbiol 2020; 11:1268. [PMID: 32676055 PMCID: PMC7333525 DOI: 10.3389/fmicb.2020.01268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Outer membrane vesicles (OMVs), produced by nonpathogenic Gram-negative bacteria, have potentially useful biotechnological applications in extraterrestrial extreme environments. However, their biological effects under the impact of various stressors have to be elucidated for safety reasons. In the spaceflight experiment, model biofilm kombucha microbial community (KMC) samples, in which Komagataeibacter intermedius was a dominant community-member, were exposed under simulated Martian factors (i.e., pressure, atmosphere, and UV-illumination) outside the International Space Station (ISS) for 1.5 years. In this study, we have determined that OMVs from post-flight K. intermedius displayed changes in membrane composition, depending on the location of the samples and some other factors. Membrane lipids such as sterols, fatty acids (FAs), and phospholipids (PLs) were modulated under the Mars-like stressors, and saturated FAs, as well as both short-chain saturated and trans FAs, appeared in the membranes of OMVs shed by both post-UV-illuminated and “dark” bacteria. The relative content of zwitterionic and anionic PLs changed, producing a change in surface properties of outer membranes, thereby resulting in a loss of interaction capability with polynucleotides. The changed composition of membranes promoted a bigger OMV size, which correlated with changes of OMV fitness. Biochemical characterization of the membrane-associated enzymes revealed an increase in their activity (DNAse, dehydrogenase) compared to wild type. Other functional membrane-associated capabilities of OMVs (e.g., proton accumulation, interaction with linear DNA, or synaptosomes) were also altered after exposure to the spaceflight stressors. Despite alterations in membranes, vesicles did not acquire endotoxicity, cytotoxicity, and neurotoxicity. Altogether, our results show that OMVs, originating from rationally selected nonpathogenic Gram-negative bacteria, can be considered as candidates in the design of postbiotics or edible mucosal vaccines for in situ production in extreme environment. Furthermore, these OMVs could also be used as promising delivery vectors for applications in Astromedicine.
Collapse
Affiliation(s)
- Olga Podolich
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Orlovska
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Leonid Zaika
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Ganna Zubova
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Maxym Galkin
- Palladin Institute of Biochemistry of NASU, Kyiv, Ukraine
| | | | | | | | | | - Mykola Skoryk
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
2
|
Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8743257. [PMID: 31178976 PMCID: PMC6501240 DOI: 10.1155/2019/8743257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
The mitochondrial F-ATP synthase is the principal energy-conserving nanomotor of cells that harnesses the proton motive force generated by the respiratory chain to make ATP from ADP and phosphate in a process known as oxidative phosphorylation. In the energy-converting membranes, F-ATP synthase is a multisubunit complex organized into a membrane-extrinsic F1 sector and a membrane-intrinsic FO domain, linked by central and peripheral stalks. Due to its essential role in the cellular metabolism, malfunction of F-ATP synthase has been associated with a variety of pathological conditions, and the enzyme is now considered as a promising drug target for multiple disease conditions and for the regulation of energy metabolism. We discuss structural and functional features of mitochondrial F-ATP synthase as well as several conditions that partially or fully inhibit the coupling between the F1 catalytic activities and the FO proton translocation, thus decreasing the cellular metabolic efficiency and transforming the enzyme into an energy-dissipating structure through molecular mechanisms that still remain to be defined.
Collapse
|
3
|
Mechanism of inhibition of mitochondrial ATP synthase by 17β−Estradiol. J Bioenerg Biomembr 2012; 45:261-70. [DOI: 10.1007/s10863-012-9497-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/09/2012] [Indexed: 01/11/2023]
|
4
|
Amaral L, Cerca P, Spengler G, Machado L, Martins A, Couto I, Viveiros M, Fanning S, Pagès JM. Ethidium bromide efflux by Salmonella: modulation by metabolic energy, pH, ions and phenothiazines. Int J Antimicrob Agents 2011; 38:140-5. [PMID: 21565465 DOI: 10.1016/j.ijantimicag.2011.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/16/2022]
Abstract
The main efflux pump of Salmonella enterica serotype Enteritidis, which obtains its energy for the extrusion of noxious agents from the proton-motive force, was studied with the aid of an ethidium bromide (EtBr) semi-automated method under conditions that define the role of metabolic energy, ions and pH in the extrusion of the universal substrate EtBr. The results obtained in this study indicate that in minimal medium containing sodium at pH 5 efflux of EtBr is independent of glucose, whereas at pH 8 metabolic energy is an absolute requirement for the maintenance of efflux. In deionised water at pH 5.5, metabolic energy is required for the maintenance of efflux. The inhibitory effect of the ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) on efflux is shown to be minimised by low pH, and at high pH by metabolic energy. Similarly, thioridazine, an inhibitor of metabolic enzymes, inhibits efflux of EtBr only at pH 8 and the degree of inhibition is lessened by the presence of metabolic energy.
Collapse
Affiliation(s)
- Leonard Amaral
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nakamura K, Ikeda S, Matsuo T, Hirata A, Takehara M, Hiyama T, Kawamura F, Kusaka I, Tsuchiya T, Kuroda T, Yabe I. Patch clamp analysis of the respiratory chain in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1103-7. [PMID: 21255555 DOI: 10.1016/j.bbamem.2011.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/08/2011] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
Bacillus subtilis is a representative Gram-positive bacterium. In aerobic conditions, this bacterium can generate an electrochemical potential across the membrane with aerobic respiration. Here, we developed the patch clamp method to analyze the respiratory chain in B. subtilis. First, we prepared giant protoplasts (GPs) from B. subtilis cells. Electron micrographs and fluorescent micrographs revealed that GPs of B. subtilis had a vacuole-like structure and that the intravacuolar area was completely separated from the cytoplasmic area. Acidification of the interior of the isolated and purified vacuole-like structure, due to H(+) translocation after the addition of NADH, revealed that they consisted of everted cytoplasmic membranes. We called these giant provacuoles (GVs) and again applied the patch clamp technique. When NADH was added as an electron donor for the respiratory system, a significant NADH-induced current was observed. Inhibition of KCN and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) demonstrated that this current is certainly due to aerobic respiration in B. subtilis. This is the first step for more detailed analyses of respiratory chain in B. subtilis, especially H(+) translocation mechanism.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Genome Applied Microbiology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bald D, Koul A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol Lett 2010; 308:1-7. [PMID: 20402785 DOI: 10.1111/j.1574-6968.2010.01959.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, poses a global health challenge due to the emergence of drug-resistant strains. Recently, bacterial energy metabolism has come into focus as a promising new target pathway for the development of antimycobacterial drugs. This review summarizes our current knowledge on mycobacterial respiratory energy conversion, in particular, during the physiologically dormant state that is associated with latent or persistent tuberculosis infections. Targeting components of respiratory ATP production, such as type-2 NADH dehydrogenase or ATP synthase, is illustrated as an emerging strategy in the development of novel drugs.
Collapse
Affiliation(s)
- Dirk Bald
- Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
7
|
ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:755-62. [PMID: 20230778 DOI: 10.1016/j.bbabio.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/20/2022]
Abstract
In the ATP synthases of Escherichia coli ADP and phosphate exert an apparent regulatory role on the efficiency of proton transport coupled to the hydrolysis of ATP. Both molecules induce clearly biphasic effects on hydrolysis and proton transfer. At intermediate concentrations (approximately 0.5-1 microM and higher) ADP inhibits hydrolysis and proton transfer; a quantitative analysis of the fluxes however proves that the coupling efficiency remains constant in this concentration range. On the other hand at nanomolar concentrations of ADP (a level obtainable only using an enzymatic ATP regenerating system) the efficiency of proton transport drops progressively, while the rate of hydrolysis remains high. Phosphate, at concentrations>or=0.1 mM, inhibits hydrolysis only if ADP is present at sufficiently high concentrations, keeping the coupling efficiency constant. At lower ADP levels phosphate is, however, necessary for an efficiently coupled catalytic cycle. We present a model for a catalytic cycle of ATP hydrolysis uncoupled from the transport of protons. The model is based on the available structures of bovine and yeast F1 and on the known binding affinities for ADP and Pi of the catalytic sites in their different functional states. The binding site related to the inhibitory effects of Pi (in association with ADP) is identified as the alphaHCbetaHC site, the pre-release site for the hydrolysis products. We suggest, moreover, that the high affinity site, associated with the operation of an efficient proton transport, could coincide with a conformational state intermediate between the alphaTPbetaTP and the alphaDPbetaDP (similar to the transition state of the hydrolysis/synthesis reaction) that does not strongly bind the ligands and can exchange them rather freely with the external medium. The emptying of this site can lead to an unproductive hydrolysis cycle that occurs without a net rotation of the central stalk and, consequently, does not translocate protons.
Collapse
|
8
|
Martins A, Spengler G, Rodrigues L, Viveiros M, Ramos J, Martins M, Couto I, Fanning S, Pagès JM, Bolla JM, Molnar J, Amaral L. pH Modulation of efflux pump activity of multi-drug resistant Escherichia coli: protection during its passage and eventual colonization of the colon. PLoS One 2009; 4:e6656. [PMID: 19684858 PMCID: PMC2722724 DOI: 10.1371/journal.pone.0006656] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/20/2009] [Indexed: 11/26/2022] Open
Abstract
Background Resistance Nodulation Division (RND) efflux pumps of Escherichia coli extrude antibiotics and toxic substances before they reach their intended targets. Whereas these pumps obtain their energy directly from the proton motive force (PMF), ATP-Binding Cassette (ABC) transporters, which can also extrude antibiotics, obtain energy from the hydrolysis of ATP. Because E. coli must pass through two pH distinct environments of the gastrointestinal system of the host, it must be able to extrude toxic agents at very acidic and at near neutral pH (bile salts in duodenum and colon for example). The herein described study examines the effect of pH on the extrusion of ethidium bromide (EB). Methodology/Principal Findings E. coli AG100 and its tetracycline induced progeny AG100TET that over-expresses the acrAB efflux pump were evaluated for their ability to extrude EB at pH 5 and 8, by our recently developed semi-automated fluorometric method. At pH 5 the organism extrudes EB without the need for metabolic energy (glucose), whereas at pH 8 extrusion of EB is dependent upon metabolic energy. Phe-Arg β-naphtylamide (PAβN), a commonly assumed inhibitor of RND efflux pumps has no effect on the extrusion of EB as others claim. However, it does cause accumulation of EB. Competition between EB and PAβN was demonstrated and suggested that PAβN was preferentially extruded. A Km representing competition between PAβN and EB has been calculated. Conclusions/Significance The results suggest that E. coli has two general efflux systems (not to be confused with a distinct efflux pump) that are activated at low and high pH, respectively, and that the one at high pH is probably a putative ABC transporter coded by msbA, which has significant homology to the ABC transporter coded by efrAB of Enterococcus faecalis, an organism that faces similar challenges as it makes its way through the toxic intestinal system of the host.
Collapse
Affiliation(s)
- Ana Martins
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Gabriella Spengler
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Liliana Rodrigues
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Miguel Viveiros
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- Cost Action BM0701 ATENS, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jorge Ramos
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Marta Martins
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
| | - Isabel Couto
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Séamus Fanning
- Cost Action BM0701 ATENS, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Centre for Food Safety, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Jean-Marie Pagès
- Cost Action BM0701 ATENS, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UMR-MD-1, IFR88, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Jean Michel Bolla
- UMR-MD-1, IFR88, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Joseph Molnar
- Cost Action BM0701 ATENS, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Medical Microbiology & Immunology, Institute of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - Leonard Amaral
- Unit of Mycobacteriology, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT/UNL), Lisboa, Portugal
- Cost Action BM0701 ATENS, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- * E-mail:
| |
Collapse
|
9
|
D'Alessandro M, Turina P, Melandri BA. Intrinsic uncoupling in the ATP synthase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1518-27. [PMID: 18952048 DOI: 10.1016/j.bbabio.2008.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 11/25/2022]
Abstract
The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | |
Collapse
|
10
|
García-Trejo JJ, Morales-Ríos E. Regulation of the F1F0-ATP synthase rotary nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. J Biol Phys 2008; 34:197-212. [PMID: 19669503 DOI: 10.1007/s10867-008-9114-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 09/08/2008] [Indexed: 12/21/2022] Open
Abstract
The F(1)F(0)-adenosine triphosphate (ATP) synthase rotational motor synthesizes most of the ATP required for living from adenosine diphosphate, Pi, and a proton electrochemical gradient across energy-transducing membranes of bacteria, chloroplasts, and mitochondria. However, as a reversible nanomotor, it also hydrolyzes ATP during de-energized conditions in all energy-transducing systems. Thus, different subunits and mechanisms have emerged in nature to control the intrinsic rotation of the enzyme to favor the ATP synthase activity over its opposite and commonly wasteful ATPase turnover. Recent advances in the structural analysis of the bacterial and mitochondrial ATP synthases are summarized to review the distribution and mechanism of the subunits that are part of the central rotor and regulate its gyration. In eubacteria, the epsilon subunit works as a ratchet to favor the rotation of the central stalk in the ATP synthase direction by extending and contracting two alpha-helixes of its C-terminal side and also by binding ATP with low affinity in thermophilic bacteria. On the other hand, in bovine heart mitochondria, the so-called inhibitor protein (IF(1)) interferes with the intrinsic rotational mechanism of the central gamma subunit and with the opening and closing of the catalytic beta-subunits to inhibit its ATPase activity. Besides its inhibitory role, the IF(1) protein also promotes the dimerization of the bovine and rat mitochondrial enzymes, albeit it is not essential for dimerization of the yeast F(1)F(0) mitochondrial complex. High-resolution electron microscopy of the dimeric enzyme in its bovine and yeast forms shows a conical shape that is compatible with the role of the ATP synthase dimer in the formation of tubular the cristae membrane of mitochondria after further oligomerization. Dimerization of the mitochondrial ATP synthase diminishes the rotational drag of the central rotor that would decrease the coupling efficiency between rotation of the central stalk and ATP synthesis taking place at the F(1) portion. In addition, F(1)F(0) dimerization and its further oligomerization also increase the stability of the enzyme to natural or experimentally induced destabilizing conditions.
Collapse
Affiliation(s)
- José J García-Trejo
- Facultad de Química, Departamento de Biología, Lab. F-117, Universidad Nacional Autónoma de México, México, D.F., 04510, México.
| | | |
Collapse
|
11
|
Cipriano DJ, Dunn SD. Tethering polypeptides through bifunctional PEG cross-linking agents to probe protein function: Application to ATP synthase. Proteins 2008; 73:458-67. [DOI: 10.1002/prot.22079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|