1
|
Song L, Liu P, Jiang W, Guo Q, Zhang C, Basit A, Li Y, Li J. α-Lys 424 Participates in Insertion of FeMoco to MoFe Protein and Maintains Nitrogenase Activity in Klebsiella oxytoca M5al. Front Microbiol 2019; 10:802. [PMID: 31057512 PMCID: PMC6477116 DOI: 10.3389/fmicb.2019.00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Our previous investigation of substrates reduction catalyzed by nitrogenase suggested that α-Ile423 of MoFe protein possibly functions as an electron transfer gate to Mo site of active center-"FeMoco". Amino acid residue α-Lys424 connects directly to α-Ile423, and they are located in the same α-helix (α423-431). In the present study, function of α-Lys424 was investigated by replacing it with Arg (alkaline, like Lys), Gln (neutral), Glu (acidic), and Ala (neutral) through site-directed mutagenesis and homologous recombination. The mutants were, respectively, termed 424R, 424Q, 424E, and 424A. Studies of diazotrophic cell growth, cytological, and enzymatic properties indicated that none of the substitutions altered the secondary structure of MoFe protein, or normal expression of nifA, nifL, and nifD. Substitution of alkaline amino acid (i.e., 424R) maintained acetylene (C2H2) and proton (H+) reduction activities at normal levels similar to that of wild-type (WT), because its FeMoco content did not reduce. In contrast, substitution of acidic or neutral amino acid (i.e., 424Q, 424E, 424A) impaired the catalytic activity of nitrogenase to varying degrees. Combination of MoFe protein structural simulation and the results of a series of experiments, the function of α-Lys424 in ensuring insertion of FeMoco to MoFe protein was further confirmed, and the contribution of α-Lys424 in maintaining low potential of the microenvironment causing efficient catalytic activity of nitrogenase was demonstrated.
Collapse
Affiliation(s)
- Lina Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengxi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingjuan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Wang L, Zhang C, Zhao J. Location and function of the high-affinity chloride in the oxygen-evolving complex – Implications from comparing studies on Cl−/Br−/I−-substituted photosystem II prepared using two different methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:249-55. [DOI: 10.1016/j.jphotobiol.2014.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
|
3
|
Wang Y, Zhang C, Wang L, Zhao J. Assignment of the μ4-O5 atom in catalytic center for water oxidation in photosystem II. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Keough JM, Zuniga AN, Jenson DL, Barry BA. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex. J Phys Chem B 2013; 117:1296-307. [PMID: 23346921 DOI: 10.1021/jp3118314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton-coupled electron transfer reactions.
Collapse
Affiliation(s)
- James M Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
5
|
Styring S, Sjöholm J, Mamedov F. Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:76-87. [PMID: 21557928 DOI: 10.1016/j.bbabio.2011.03.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/10/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
Photosystem II (PSII), the thylakoid membrane enzyme which uses sunlight to oxidize water to molecular oxygen, holds many organic and inorganic redox cofactors participating in the electron transfer reactions. Among them, two tyrosine residues, Tyr-Z and Tyr-D are found on the oxidizing side of PSII. Both tyrosines demonstrate similar spectroscopic features while their kinetic characteristics are quite different. Tyr-Z, which is bound to the D1 core protein, acts as an intermediate in electron transfer between the primary donor, P(680) and the CaMn₄ cluster. In contrast, Tyr-D, which is bound to the D2 core protein, does not participate in linear electron transfer in PSII and stays fully oxidized during PSII function. The phenolic oxygens on both tyrosines form well-defined hydrogen bonds to nearby histidine residues, His(Z) and His(D) respectively. These hydrogen bonds allow swift and almost activation less movement of the proton between respective tyrosine and histidine. This proton movement is critical and the phenolic proton from the tyrosine is thought to toggle between the tyrosine and the histidine in the hydrogen bond. It is found towards the tyrosine when this is reduced and towards the histidine when the tyrosine is oxidized. The proton movement occurs at both room temperature and ultra low temperature and is sensitive to the pH. Essentially it has been found that when the pH is below the pK(a) for respective histidine the function of the tyrosine is slowed down or, at ultra low temperature, halted. This has important consequences for the function also of the CaMn₄ complex and the protonation reactions as the critical Tyr-His hydrogen bond also steer a multitude of reactions at the CaMn₄ cluster. This review deals with the discovery and functional assignments of the two tyrosines. The pH dependent phenomena involved in oxidation and reduction of respective tyrosine is covered in detail. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Stenbjörn Styring
- Molecular Biomimetics, Department for Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, Sweden.
| | | | | |
Collapse
|
6
|
Sjöholm J, Havelius KGV, Mamedov F, Styring S. Effects of pH on the S3 State of the Oxygen Evolving Complex in Photosystem II Probed by EPR Split Signal Induction. Biochemistry 2010; 49:9800-8. [DOI: 10.1021/bi101364t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Kajsa G. V. Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
7
|
Bao H, Zhang C, Ren Y, Zhao J. Methanol as a probe to investigate the relationship between the secondary electron donor TyrZ and the substrate water molecules in active photosystem II. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-0047-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Ren Y, Zhang C, Zhao J. Substitution of chloride by bromide modifies the low-temperature tyrosine Z oxidation in active photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1421-7. [PMID: 20206122 DOI: 10.1016/j.bbabio.2010.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/29/2010] [Accepted: 02/23/2010] [Indexed: 11/19/2022]
Abstract
Chloride is an essential cofactor for photosynthetic water oxidation. However, its location and functional roles in active photosystem II are still a matter of debate. We have investigated this issue by studying the effects of Cl- replacement by Br- in active PSII. In Br- substituted samples, Cl- is effectively replaced by Br- in the presence of 1.2 M NaBr under room light with protection of anaerobic atmosphere followed by dialysis. The following results have been obtained. i) The oxygen-evolving activities of the Br--PSII samples are significantly lower than that of the Cl--PSII samples; ii) The same S2 multiline EPR signals are observed in both Br- and Cl--PSII samples; iii) The amplitudes of the visible light induced S1TyrZ* and S2TyrZ* EPR signals are significantly decreased after Br- substitution; the S1TyrZ* EPR signal is up-shifted about 8G, whereas the S2TyrZ* signal is down-shifted about 12 G after Br- substitution. These results imply that the redox properties of TyrZ and spin interactions between TyrZ* and Mn-cluster could be significantly modified due to Br- substitution. It is suggested that Cl-/Br- probably coordinates to the Ca2+ ion of the Mn-cluster in active photosystem II.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
9
|
Low-temperature electron transfer suggests two types of QA in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:339-46. [DOI: 10.1016/j.bbabio.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
10
|
Sjöholm J, Havelius KGV, Mamedov F, Styring S. The S0 State of the Water Oxidizing Complex in Photosystem II: pH Dependence of the EPR Split Signal Induction and Mechanistic Implications. Biochemistry 2009; 48:9393-404. [DOI: 10.1021/bi901177w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Kajsa G. V. Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| |
Collapse
|
11
|
Ren Y, Zhang C, Bao H, Shen J, Zhao J. Probing tyrosine Z oxidation in Photosystem II core complex isolated from spinach by EPR at liquid helium temperatures. PHOTOSYNTHESIS RESEARCH 2009; 99:127-138. [PMID: 19214772 DOI: 10.1007/s11120-009-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Tyrosine Z (Tyr(Z)) oxidation observed at liquid helium temperatures provides new insights into the structure and function of Tyr(Z) in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report Tyr(Z) oxidation in the S(1) and S(2) states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S(1) state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S(1)Tyr(Z)(*) EPR signal. Furthermore, EPR signals of the S(2) state of the Mn-cluster, the oxidation of the non-heme iron, and the S(1)Tyr(Z)(*) in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.
Collapse
Affiliation(s)
- Yanan Ren
- Laboratory of Photochemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
12
|
Hay S, Scrutton NS. H-transfers in Photosystem II: what can we learn from recent lessons in the enzyme community? PHOTOSYNTHESIS RESEARCH 2008; 98:169-177. [PMID: 18766465 DOI: 10.1007/s11120-008-9326-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/28/2008] [Indexed: 05/26/2023]
Abstract
Over the last 10 years, studies of enzyme systems have demonstrated that, in many cases, H-transfers occur by a quantum mechanical tunneling mechanism analogous to long-range electron transfer. H-transfer reactions can be described by an extension of Marcus theory and, by substituting hydrogen with deuterium (or even tritium), it is possible to explore this theory in new ways by employing kinetic isotope effects. Because hydrogen has a relatively short deBroglie wavelength, H-transfers are controlled by the width of the reaction barrier. By coupling protein dynamics to the reaction coordinate, enzymes have the potential ability to facilitate more efficient H-tunneling by modulating barrier properties. In this review, we describe recent advances in both experimental and theoretical studies of enzymatic H-transfer, in particular the role of protein dynamics or promoting motions. We then discuss possible consequences with regard to tyrosine oxidation/reduction kinetics in Photosystem II.
Collapse
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
13
|
Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1109-15. [DOI: 10.1016/j.bbabio.2008.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
14
|
Ho FM, Styring S. Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:140-53. [DOI: 10.1016/j.bbabio.2007.08.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
|
15
|
Havelius KGV, Styring S. pH Dependent Competition between YZand YDin Photosystem II Probed by Illumination at 5 K. Biochemistry 2007; 46:7865-74. [PMID: 17559194 DOI: 10.1021/bi700377g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photosystem II (PSII) reaction center contains two redox active tyrosines, YZ and YD, situated on the D1 and D2 proteins, respectively. By illumination at 5 K, oxidation of YZ in oxygen-evolving PSII can be observed as induction of the Split S1 EPR signal from YZ* in magnetic interaction with the CaMn4 cluster, whereas oxidation of YD can be observed as the formation of the free radical EPR signal from YD*. We have followed the light induced induction at 5 K of the Split S1 signal between pH 4-8.5. The formation of the signal, that is, the oxidation of YZ, is pH independent and efficient between pH 5.5 and 8.5. At low pH, the split signal formation decreases with pKa approximately 4.7-4.9. In samples with chemically pre-reduced YD, the pH dependent competition between YZ and YD was studied. Only YZ was oxidized below pH 7.2, but at pH above 7.2, the oxidation of YD became possible, and the formation of the Split S1 signal diminished. The onset of YD oxidation occurred with pKa approximately 8.0, while the Split S1 signal decreased with pKa approximately 7.9 demonstrating that the two tyrosines compete in this pH interval. The results reflect the formation and breaking of hydrogen bonds between YZ and D1-His190 (HisZ) and YD and D2-His190 (HisD), respectively. The oxidation of respective tyrosine at 5 K demands that the hydrogen bond is well-defined; otherwise, the low-temperature oxidation is not possible. The results are discussed in the framework of recent literature data and with respect to the different oxidation kinetics of YZ and YD.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Angström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | | |
Collapse
|
16
|
Zhang C. Low-barrier hydrogen bond plays key role in active photosystem II--a new model for photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:493-9. [PMID: 17254545 DOI: 10.1016/j.bbabio.2006.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/27/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
The function and mechanism of Tyr(Z) in active photosystem II (PSII) is one of the long-standing issues in the study of photosynthetic water oxidation. Based on recent investigations on active PSII and theoretical studies, a new model is proposed, in which D1-His190 acts as a bridge, to form a low-barrier hydrogen bond (LBHB) with Tyr(Z), and a coordination bond to Mn or Ca ion of the Mn-cluster. Accordingly, this new model differs from previous proposals concerning the mechanism of Tyr(Z) function in two aspects. First, the LBHB plays a key role to decrease the activation energy for Tyr(Z) oxidation and Tyr(Z)(.) reduction during photosynthetic water oxidation. Upon the oxidation of Tyr(Z), the hydrogen bond between Tyr(Z) and His190 changes from a LBHB to a weak hydrogen bond, and vice versa upon Tyr(Z)(.) reduction. In both stages, the electron transfer and proton transfer are coupled. Second, the positive charge formed after Tyr(Z) oxidation may play an important role for water oxidation. It can be delocalized on the Mn-cluster, thus helps to accelerate the proton release from substrate water on Mn-cluster. This model is well reconciled with observations of the S-state dependence of Tyr(Z) oxidation and Tyr(Z)(.) reduction, proton release, isotopic effect and recent EPR experiments. Moreover, the difference between Tyr(Z) and Tyr(D) in active PSII can also be readily rationalized. The His190 binding to the Mn-cluster predicted in this model is contradictious to the recent structure data, however, it has been aware that the crystal structure of the Mn-cluster and its environment are significantly modified by X-ray due to radiation damage and are different from that in active PSII. It is suggested that the His190 may be protonated during the radiation damage, which leads to the loss of its binding to Mn-cluster and the strong hydrogen bond with Tyr(Z). This type of change arising from radiation damage has been confirmed in other enzyme systems.
Collapse
Affiliation(s)
- Chunxi Zhang
- Laboratory of Photochemistry, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.
| |
Collapse
|