1
|
The evolution of the human mitochondrial bc1 complex- adaptation for reduced rate of superoxide production? J Bioenerg Biomembr 2023; 55:15-31. [PMID: 36737563 DOI: 10.1007/s10863-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
The mitochondrial bc1 complex is a major source of mitochondrial superoxide. While bc1-generated superoxide plays a beneficial signaling role, excess production of superoxide lead to aging and degenerative diseases. The catalytic core of bc1 comprises three peptides -cytochrome b, Fe-S protein, and cytochrome c1. All three core peptides exhibit accelerated evolution in anthropoid primates. It has been suggested that the evolution of cytochrome b in anthropoids was driven by a pressure to reduce the production of superoxide. In humans, the bc1 core peptides exhibit anthropoid-specific substitutions that are clustered near functionally critical sites that may affect the production of superoxide. Here we compare the high-resolution structures of bovine, mouse, sheep and human bc1 to identify structural changes that are associated with human-specific substitutions. Several cytochrome b substitutions in humans alter its interactions with other subunits. Most significantly, there is a cluster of seven substitutions, in cytochrome b, the Fe-S protein, and cytochrome c1 that affect the interactions between these proteins at the tether arm of the Fe-S protein and may alter the rate of ubiquinone oxidation and the rate of superoxide production. Another cluster of substitutions near heme bH and the ubiquinone reduction site, Qi, may affect the rate of ubiquinone reduction and thus alter the rate of superoxide production. These results are compatible with the hypothesis that cytochrome b in humans (and other anthropoid primates) evolve to reduce the rate of production of superoxide thus enabling the exceptional longevity and exceptional cognitive ability of humans.
Collapse
|
2
|
Mourad MM, Shahin SA, El-Ratel IT, El Basuini MF. Effect of Treating Eggs with Coenzyme Q10 (CoQ10) on Growth Variables, Histomorphometry, and Antioxidant Capacity in Red Tilapia ( Oreochromis aureus × Oreochromis mossambicus) Larvae. Animals (Basel) 2022; 12:ani12172219. [PMID: 36077939 PMCID: PMC9454522 DOI: 10.3390/ani12172219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 02/02/2023] Open
Abstract
Red tilapia eggs one day post fertilization (dpf) were exposed to coenzyme Q10 (CoQ10) at rates of 0, 5, and 10 mg/L for control, treatment 2 (C5), and treatment 3 (C10), respectively, without exchanging water and until the larval mouth-opening stage. Fertilized eggs of red tilapia exposed to different concentrations of CoQ10 were hatched at rates (p > 0.05) between 38 to 54.67%. The yolk-sac diameter at the 2nd day post hatching (dph), ranged from 1.85 to 1.87 mm in depth and 1.63 to 1.88 mm in width and was not altered by the CoQ10 treatments. Similarly, red tilapia survival (p > 0.05) ranged from 22.67 to 32%. On 6 dph, a slight percentage (2.08%) of survived fishes exposed to high CoQ10 dose (C10) exhibited larval deformation in the form of an axial curvature of the spine in the abdominal and caudal region. Larvae displayed a normal structure of the esophagus folds in all fish groups, and larvae in the C5 group displayed the longest folds and widest muscularis layer, followed by fishes in the C10 group and the control. Red tilapia fry on 30 dph treated with CoQ10 possessed higher antioxidant potentials in terms of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) compared to the control. In conclusion, treating Red tilapia fertile eggs with 5 mg/L CoQ10 improves the growth, gut structure, and antioxidant efficiency of the produced larvae.
Collapse
Affiliation(s)
- Mona M. Mourad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Shimaa A. Shahin
- Animal and Fish Production Department, Faculty of Agriculture-Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | - Ibrahim T. El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mohammed F. El Basuini
- Faculty of Desert Agriculture, King Salman International University, El Tor 46612, Egypt
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Correspondence: or
| |
Collapse
|
3
|
El Basuini MF, Teiba II, Zaki MAA, Alabssawy AN, El-Hais AM, Gabr AA, Dawood MAO, Zaineldin AI, Mzengereza K, Shadrack RS, Dossou S. Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 98:420-428. [PMID: 32001349 DOI: 10.1016/j.fsi.2020.01.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The present study was conducted to investigate the effects of CoQ10 dietary supplementation on growth performance, feed utilization, blood profile, immune response, and oxidative status of Nile tilapia (12.4 ± 0.11 g, initial body weight). Five experimental diets were formulated containing CoQ10 at levels of 0, 10, 20, 30, 40 mg kg-1 diet (D1, D2, D3, D4, and D5, respectively). The results of a 56-days feeding trial showed that, significantly higher weight gain % (WG %), specific growth rate (SGR), feed intake (FI), and feed efficiency ratio (FER) were recorded in fish groups fed diets supplemented with different levels of CoQ10 than fish fed the control diet, while survival rate (SR%), condition factor (CF), hepatosomatic index (HSI) and viscerasomatic index (VSI) showed no obvious differences (P > 0.05) among all experimental groups. The highest activities of digestive enzymes (protease, amylase, and lipase) were recorded in D3, D4, and D5 groups. Moreover, blood status of all experimental fish was within normal rates and significant alterations were only in the case of glucose, cortisol, total cholesterol (T-Chol), triglycerides, and total protein (TP), where fish fed on D3, D4 and D5 diets exhibited lower values of glucose, cortisol, T-Chol, and triglycerides and higher values of TP. Furthermore, the lowest values of immune response [lysozyme, bactericidal, respiratory burst (NBT), and alternative complement pathway activities (ACP)], antioxidant capacity and oxidative related genes expressions [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)] resulted from feeding on the basal diet (D1) compared to CoQ10 diets, especially with its high levels {≥20 mg kg-1 diet (D3, D4, and D5)} in most cases. In conclusion, our results suggest that the use of ≥20 mg CoQ10 kg-1 diet improves the growth and health being of Nile tilapia.
Collapse
Affiliation(s)
- Mohammed F El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt.
| | - Islam I Teiba
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt; The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan
| | | | | | - Abdelaziz M El-Hais
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Ahmed A Gabr
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt
| | | | - Kumbukani Mzengereza
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan
| | - Ronick S Shadrack
- The United Graduate School of Agriculture Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan
| | - Serge Dossou
- Laboratoire d'Hydrobiologie et d'Aquaculture, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, 01 BP 526, Cotonou, Benin
| |
Collapse
|
4
|
Acaz-Fonseca E, Ortiz-Rodriguez A, Garcia-Segura LM, Astiz M. Sex differences and gonadal hormone regulation of brain cardiolipin, a key mitochondrial phospholipid. J Neuroendocrinol 2020; 32:e12774. [PMID: 31323169 DOI: 10.1111/jne.12774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Cardiolipin (CL) is a phospholipid that is almost exclusively located in the inner mitochondrial membrane of eukaryotic cells. As a result of its unique structure and distribution, CL establishes non-covalent bonds with a long list of proteins involved in ATP production, mitochondria biogenesis, mitophagy and apoptosis. Thus, the amount of CL, as well as its fatty acid composition and location, strongly impacts upon mitochondrial-dependent functions and therefore the metabolic homeostasis of different tissues. The brain is particularly sensitive to mitochondrial dysfunction as a result of its high metabolic demand. Several mitochondrial related-neurodegenerative disorders, as well as physiological ageing, show altered CL metabolism. Furthermore, mice lacking enzymes involved in CL synthesis show cognitive impairments. CL content and metabolism are regulated by gonadal hormones in the developing and adult brain. In neuronal cultures, oestradiol increases CL content, whereas adult ovariectomy decreases CL content and alters CL metabolism in the hippocampal mitochondria. Transient sex differences in brain CL metabolism have been detected during development. At birth, brain CL has a higher proportion of unsaturated fatty acids in the brain of male mice than in the brain of females. In addition, the expression of enzymes involved in CL de novo and recycling synthetic pathways is higher in males. Most of these sex differences are abolished by the neonatal androgenisation of females, suggesting a role for testosterone in the generation of sex differences in brain CL. The regulation of brain CL by gonadal hormones may be linked to their homeostatic and protective actions in neural cells, as well as the manifestation of sex differences in neurodegenerative disorders.
Collapse
Affiliation(s)
- Estefania Acaz-Fonseca
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis Miguel Garcia-Segura
- Instituto Cajal-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
6
|
Shukla S, Dubey KK. CoQ10 a super-vitamin: review on application and biosynthesis. 3 Biotech 2018; 8:249. [PMID: 29755918 DOI: 10.1007/s13205-018-1271-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ) or ubiquinone is found in the biological system which is synthesized by the conjugation of benzoquinone ring with isoprenoid chain of variable length. Coenzyme Q10 supplementation energizes the body and increases body energy production in the form of ATP and helps to treat various human diseases such as cardiomyopathy, muscular dystrophy, periodontal disease, etc. Reports of these potential therapeutic advantages of CoQ10 have resulted in its high market demand, which focus the researchers to work on this molecule and develop better bioprocess methods for commercial level production. At the moment, chemical synthesis, semi-synthetic method as well as bio-production utilizing microbes as biofactory are in use for the synthesis of CoQ10. Chemical synthesis involves use of cheap and easily available precursor molecules such as isoprenol, chloromethylquinone, vinylalane, and solanesol. Chemical synthesis methods due to the use of various solvents and chemicals are less feasible, which limits its application. The microbial production of CoQ10 has added advantages of being produced in optically pure form with high yield using inexpensive medium composition. Several bacteria, e.g., Agrobacterium, Paracoccus, Rhodobacterium, and yeast such as Candida, Rhodotorula are the potent ubiquinone producer. Some alternative biosynthetic pathway for designing of CoQ10 production coupled with metabolic engineering might help to increase CoQ10 production. The most common practiced strategy for strain development for commercial CoQ10 production is through natural isolation and chemical mutagenesis. Here, we have reviewed the chemical, semi-synthetic as well as microbial CoQ10 production in detail.
Collapse
Affiliation(s)
- Shraddha Shukla
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031 India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031 India
| |
Collapse
|
7
|
Basu Ball W, Neff JK, Gohil VM. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett 2017; 592:1273-1290. [PMID: 29067684 DOI: 10.1002/1873-3468.12887] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.
Collapse
Affiliation(s)
- Writoban Basu Ball
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - John K Neff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci 2017; 74:3883-3896. [PMID: 28785805 PMCID: PMC11107625 DOI: 10.1007/s00018-017-2615-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO2, hydroxyl (·OH) and carbonate radicals (CO3·-) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O2·-). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach, Institute of Zoology and Anthropology, University of Göttingen, Bürgerstr. 50, 37073, Göttingen, Germany.
| |
Collapse
|
9
|
Kuleta P, Sarewicz M, Postila P, Róg T, Osyczka A. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1661-8. [PMID: 27421232 PMCID: PMC5001787 DOI: 10.1016/j.bbabio.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/22/2016] [Accepted: 07/10/2016] [Indexed: 11/23/2022]
Abstract
Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site.
Collapse
Affiliation(s)
- Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland
| | - Pekka Postila
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
10
|
Atomistic determinants of co-enzyme Q reduction at the Q i-site of the cytochrome bc 1 complex. Sci Rep 2016; 6:33607. [PMID: 27667198 PMCID: PMC5035994 DOI: 10.1038/srep33607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023] Open
Abstract
The cytochrome (cyt) bc1 complex is an integral component of the respiratory electron transfer chain sustaining the energy needs of organisms ranging from humans to bacteria. Due to its ubiquitous role in the energy metabolism, both the oxidation and reduction of the enzyme’s substrate co-enzyme Q has been studied vigorously. Here, this vast amount of data is reassessed after probing the substrate reduction steps at the Qi-site of the cyt bc1 complex of Rhodobacter capsulatus using atomistic molecular dynamics simulations. The simulations suggest that the Lys251 side chain could rotate into the Qi-site to facilitate binding of half-protonated semiquinone – a reaction intermediate that is potentially formed during substrate reduction. At this bent pose, the Lys251 forms a salt bridge with the Asp252, thus making direct proton transfer possible. In the neutral state, the lysine side chain stays close to the conserved binding location of cardiolipin (CL). This back-and-forth motion between the CL and Asp252 indicates that Lys251 functions as a proton shuttle controlled by pH-dependent negative feedback. The CL/K/D switching, which represents a refinement to the previously described CL/K pathway, fine-tunes the proton transfer process. Lastly, the simulation data was used to formulate a mechanism for reducing the substrate at the Qi-site.
Collapse
|
11
|
Rottenberg H. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b. J Bioenerg Biomembr 2014; 46:435-45. [PMID: 24827527 DOI: 10.1007/s10863-014-9552-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
Abstract
The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA, 18938, USA,
| |
Collapse
|
12
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 2014; 20:1925-53. [PMID: 24094094 DOI: 10.1089/ars.2013.5280] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiolipin (CL) is a unique phospholipid that is almost exclusively localized at the level of the inner mitochondrial membrane (IMM), where it is biosynthesized. This phospholipid is associated with membranes which are designed to generate an electrochemical gradient that is used to produce ATP. Such membranes include the bacterial plasma membrane and IMM. This ubiquitous and intimate association between CL and energy-transducing membranes suggests an important role for CL in mitochondrial bioenergetic processes. CL has been shown to interact with a number of IMM proteins, including the respiratory chain complexes and substrate carriers. Moreover, CL is involved in different stages of the mitochondrial apoptosis process as well as in mitochondrial membrane stability and dynamics. Alterations in CL structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we provide an overview of the roles of CL in mitochondrial function and bioenergetics in health and disease.
Collapse
Affiliation(s)
- Giuseppe Paradies
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy
| | | | | | | |
Collapse
|
13
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:408-17. [PMID: 24183692 DOI: 10.1016/j.bbabio.2013.10.006] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022]
Abstract
Cardiolipin is a unique phospholipid which is almost exclusively located in the inner mitochondrial membrane where it is biosynthesized. Considerable progress has recently been made in understanding the role of cardiolipin in mitochondrial function and bioenergetics. This phospholipid is associated with membranes designed to generate an electrochemical gradient that is used to produce ATP, such as bacterial plasma membranes and inner mitochondrial membrane. This ubiquitous and intimate association between cardiolipin and energy transducing membranes indicates an important role for cardiolipin in mitochondrial bioenergetic processes. Cardiolipin has been shown to interact with a number of proteins, including the respiratory chain complexes and substrate carrier proteins. Over the past decade, the significance of cardiolipin in the organization of components of the electron transport chain into higher order assemblies, termed respiratory supercomplexes, has been established. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process, as well as in mitochondrial membrane stability and dynamics. This review discusses the current understanding of the functional role that cardiolipin plays in several reactions and processes involved in mitochondrial bioenergetics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Valeria Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Valentina De Benedictis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| |
Collapse
|
15
|
Carrasco MP, Gut J, Rodrigues T, Ribeiro MHL, Lopes F, Rosenthal PJ, Moreira R, Dos Santos DJVA. Exploring the Molecular Basis of Qo bc1 Complex Inhibitors Activity to Find Novel Antimalarials Hits. Mol Inform 2013; 32:659-70. [PMID: 27481771 DOI: 10.1002/minf.201300024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/11/2013] [Indexed: 02/01/2023]
Abstract
Cytochrome bc1 complex is a crucial element in the mitochondrial respiratory chain, being indispensable for the survival of several species of Plasmodia that cause malaria and, therefore, it is a promising target for antimalarial drug development. We report a molecular docking study building on the most recently obtained X-ray structure of the Saccharomyces cerevisiae bc1 complex (PDB code: 3CX5) using several reported inhibitors with experimentally determined IC50 values against the Plasmodium falciparum bc1 complex. We produced a molecular docking model that correlated the calculated binding free energy with the experimental inhibitory activity of each compound. This Qo model was used to search the drug-like database included in the MOE package for novel potential bc1 complex inhibitors. Twenty three compounds were chosen to be tested for their antimalarial activity and four of these compounds demonstrated activity against the chloroquine-resistant W2 strain of P. falciparum. The most active compounds were also active against the atovaquone-resistant P. falciparum FCR3 strain and S. cerevisiae. Our study suggests the validity of the yeast bc1 complex structure as a model for the discovery of new antimalarial hits.
Collapse
Affiliation(s)
- Marta P Carrasco
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94143-0811, USA
| | - Tiago Rodrigues
- Departement Chemie und Angewandte Biowissenschaften, Eidgenössische Technische Hochschule (ETH), Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Maria H L Ribeiro
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Francisca Lopes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA 94143-0811, USA
| | - Rui Moreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470
| | - Daniel J V A Dos Santos
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal phone/fax: +351217946477/+351217946470. .,REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, R. do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
16
|
Renger T, Müh F. Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys 2013; 15:3348-71. [PMID: 23361062 DOI: 10.1039/c3cp43439g] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss a bottom up approach for modeling photosynthetic light-harvesting. Methods are reviewed for a full structure-based parameterization of the Hamiltonian of pigment-protein complexes (PPCs). These parameters comprise (i) the local transition energies of the pigments in their binding sites in the protein, the site energies; (ii) the couplings between optical transitions of the pigments, the excitonic couplings; and (iii) the spectral density characterizing the dynamic modulation of pigment transition energies and excitonic couplings by protein vibrations. Starting with quantum mechanics perturbation theory, we provide a microscopic foundation for the standard PPC Hamiltonian and relate the expressions obtained for its matrix elements to quantities that can be calculated with classical molecular mechanics/electrostatics approaches including the whole PPC in atomic detail and using charge and transition densities obtained with quantum chemical calculations on the isolated building blocks of the PPC. In the second part of this perspective, the Hamiltonian is utilized to describe the quantum dynamics of excitons. Situations are discussed that differ in the relative strength of excitonic and exciton-vibrational coupling. The predictive power of the approaches is demonstrated in application to different PPCs, and challenges for future work are outlined.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Linz, Austria.
| | | |
Collapse
|
17
|
Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1937-49. [PMID: 22561115 DOI: 10.1016/j.bbabio.2012.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
18
|
Ullmann RT, Ullmann GM. GMCT : a Monte Carlo simulation package for macromolecular receptors. J Comput Chem 2012; 33:887-900. [PMID: 22278916 DOI: 10.1002/jcc.22919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
Generalized Monte Carlo titration (GMCT) is a versatile suite of computer programs for the efficient simulation of complex macromolecular receptor systems as for example proteins. The computational model of the system is based on a microstate description of the receptor and an average description of its surroundings in terms of chemical potentials. The receptor can be modeled in great detail including conformational flexibility and many binding sites with multiple different forms that can bind different ligand types. Membrane embedded systems can be modeled including electrochemical potential gradients. Overall properties of the receptor as well as properties of individual sites can be studied with a variety of different Monte Carlo (MC) simulation methods. Metropolis MC, Wang-Landau MC and efficient free energy calculation methods are included. GMCT is distributed as free open source software at www.bisb.uni-bayreuth.de under the terms of the GNU Affero General Public License.
Collapse
Affiliation(s)
- R Thomas Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | |
Collapse
|
19
|
Fermentation kinetics of production of ubiquinone-10 by Paracoccus dinitrificans NRRL B-3785: Effect of type and concentration of carbon and nitrogen sources. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0086-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
El Khoury Y, Trivella A, Gross J, Hellwig P. Probing the Hydrogen Bonding Structure in the Rieske Protein. Chemphyschem 2010; 11:3313-9. [DOI: 10.1002/cphc.201000331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules 2009; 14:5054-102. [PMID: 20032877 PMCID: PMC6255388 DOI: 10.3390/molecules14125054] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. L-theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner str. 28, D-37073 Göttingen, Germany.
| |
Collapse
|
22
|
Shin JY, Shin JI, Kim JS, Yang YS, Hwang Y, Yang JS, Shin D, Seo JH, Jin YS, Park YC, Hwang JS, Kweon DH. Assembly of Coenzyme Q10 nanostructure resembling nascent discoidal high density lipoprotein particle. Biochem Biophys Res Commun 2009; 388:217-21. [DOI: 10.1016/j.bbrc.2009.07.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/27/2009] [Indexed: 01/19/2023]
|
23
|
Cheap H, Bernad S, Derrien V, Gerencsér L, Tandori J, de Oliveira P, Hanson DK, Maróti P, Sebban P. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1505-15. [PMID: 19632193 DOI: 10.1016/j.bbabio.2009.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.
Collapse
Affiliation(s)
- Hélène Cheap
- Laboratoire de Chimie Physique, UMR 8000, University of Paris-Sud 11/CNRS, 91405 cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McVol - a program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J Mol Model 2009; 16:419-29. [PMID: 19626353 DOI: 10.1007/s00894-009-0541-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/23/2009] [Indexed: 10/20/2022]
Abstract
In this paper, we describe a Monte Carlo method for determining the volume of a molecule. A molecule is considered to consist of hard, overlapping spheres. The surface of the molecule is defined by rolling a probe sphere over the surface of the spheres. To determine the volume of the molecule, random points are placed in a three-dimensional box, which encloses the whole molecule. The volume of the molecule in relation to the volume of the box is estimated by calculating the ratio of the random points placed inside the molecule and the total number of random points that were placed. For computational efficiency, we use a grid-cell based neighbor list to determine whether a random point is placed inside the molecule or not. This method in combination with a graph-theoretical algorithm is used to detect internal cavities and surface clefts of molecules. Since cavities and clefts are potential water binding sites, we place water molecules in the cavities. The potential water positions can be used in molecular dynamics calculations as well as in other molecular calculations. We apply this method to several proteins and demonstrate the usefulness of the program. The described methods are all implemented in the program McVol, which is available free of charge from our website at http://www.bisb.uni-bayreuth.de/software.html .
Collapse
|
25
|
Role of phospholipids in respiratory cytochrome bc1 complex catalysis and supercomplex formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:609-16. [DOI: 10.1016/j.bbabio.2009.02.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 11/22/2022]
|
26
|
Kocherginsky N. Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 99:20-41. [PMID: 19049812 DOI: 10.1016/j.pbiomolbio.2008.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peter D. Mitchell, who was awarded the Nobel Prize in Chemistry 30 years ago, in 1978, formulated the chemiosmotic theory of oxidative phosphorylation. This review initially analyzes the major aspects of this theory, its unresolved problems, and its modifications. A new physico-chemical mechanism of energy transformation and coupling of oxidation and phosphorylation is then suggested based on recent concepts regarding proteins, including ATPases that work as molecular motors, and acidic lipids that act as hydrogen ion (H(+)) carriers. According to this proposed mechanism, the chemical energy of a redox substrate is transformed into nonequilibrium states of electron-transporting chain (ETC) coupling proteins. This leads to nonequilibrium pumping of H(+) into the membrane. An acidic lipid, cardiolipin, binds with this H(+) and carries it to the ATP-synthase along the membrane surface. This transport generates gradients of surface tension or electric field along the membrane surface. Hydrodynamic effects on a nanolevel lead to rotation of ATP-synthase and finally to the release of ATP into aqueous solution. This model also explains the generation of a transmembrane protonmotive force that is used for regulation of transmembrane transport, but is not necessary for the coupling of electron transport and ATP synthesis.
Collapse
|
27
|
Gunner MR, Madeo J, Zhu Z. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 2008; 40:509-19. [PMID: 18979192 DOI: 10.1007/s10863-008-9179-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
Abstract
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc(1) oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the Q(A) and Q(B) sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary Q(A) site ubiquinone is reduced only to the anionic semiquinone (Q(*-)) while in the secondary Q(B) site the product is the doubly reduced, doubly protonated quinol (QH(2)). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q(*-) while destabilizing Q(=) relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
28
|
Kleinschroth T, Anderka O, Ritter M, Stocker A, Link TA, Ludwig B, Hellwig P. Characterization of mutations in crucial residues around the Qo binding site of the cytochrome bc1 complex from Paracoccus denitrificans. FEBS J 2008; 275:4773-85. [DOI: 10.1111/j.1742-4658.2008.06611.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E. Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. PHOTOSYNTHESIS RESEARCH 2008; 97:33-53. [PMID: 18478354 DOI: 10.1007/s11120-008-9306-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Computational methods based on continuum electrostatics are widely used in theoretical biochemistry to analyze the function of proteins. Continuum electrostatic methods in combination with quantum chemical and molecular mechanical methods can help to analyze even very complex biochemical systems. In this article, applications of these methods to proteins involved in photosynthesis are reviewed. After giving a short introduction to the basic concepts of the continuum electrostatic model based on the Poisson-Boltzmann equation, we describe the application of this approach to the docking of electron transfer proteins, to the comparison of isofunctional proteins, to the tuning of absorption spectra, to the analysis of the coupling of electron and proton transfer, to the analysis of the effect of membrane potentials on the energetics of membrane proteins, and to the kinetics of charge transfer reactions. Simulations as those reviewed in this article help to analyze molecular mechanisms on the basis of the structure of the protein, guide new experiments, and provide a better and deeper understanding of protein functions.
Collapse
Affiliation(s)
- G Matthias Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1001-19. [PMID: 18501698 DOI: 10.1016/j.bbabio.2008.04.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/26/2008] [Accepted: 04/23/2008] [Indexed: 11/20/2022]
Abstract
Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.
Collapse
|
31
|
Cluis CP, Burja AM, Martin VJJ. Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 2008; 25:514-21. [PMID: 17935805 DOI: 10.1016/j.tibtech.2007.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/31/2007] [Accepted: 08/07/2007] [Indexed: 11/18/2022]
Abstract
Coenzyme Q or ubiquinone (UQ) is a naturally occurring coenzyme formed from the conjugation of a benzoquinone ring and an isoprenoid chain of varying length. UQ-10, the main UQ species produced by humans, provides therapeutic benefits in certain human diseases, such as cardiomyopathy, when administered orally. Increased consumer demand has led to the development of bioprocesses for the commercial production of UQ-10. Up to now, these processes have relied on microbes that produce high levels of UQ-10 naturally. However, as knowledge of the biosynthetic enzymes and of regulatory mechanisms modulating UQ production increases, opportunities arise for the genetic engineering of UQ-10 production in hosts, such as Escherichia coli, that are better suited for commercial fermentation. We present the various strategies used up to now to improve and/or engineer UQ-10 production in microbes and analyze yields obtained in light of the current knowledge on the biosynthesis of this molecule.
Collapse
Affiliation(s)
- Corinne P Cluis
- Concordia University, Department of Biology, 7141 Sherbrooke West, Montréal, Québec, Canada, H4B 1R6
| | | | | |
Collapse
|
32
|
A structural perspective on mechanism and function of the cytochrome bc (1) complex. Results Probl Cell Differ 2007; 45:253-78. [PMID: 18038116 DOI: 10.1007/400_2007_042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytochrome bc (1) complex is a fundamental component of the energy conversion machinery of respiratory and photosynthetic electron transfer chains. The multi-subunit membrane protein complex couples electron transfer from hydroquinone to cytochrome c to the translocation of protons across the membrane, thereby substantially contributing to the proton motive force that is used for ATP synthesis. Considerable progress has been made with structural and functional studies towards complete elucidation of the Q cycle mechanism, which was originally proposed by Mitchell 30 years ago. Yet, open questions regarding key steps of the mechanism still remain. The role of the complex as a major source of reactive oxygen species and its implication in pathophysiological conditions has recently gained interest.
Collapse
|
33
|
Koepke J, Krammer EM, Klingen AR, Sebban P, Ullmann GM, Fritzsch G. pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 2007; 371:396-409. [PMID: 17570397 DOI: 10.1016/j.jmb.2007.04.082] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 04/05/2007] [Accepted: 04/17/2007] [Indexed: 11/30/2022]
Abstract
The structure of the photosynthetic reaction-center from Rhodobacter sphaeroides has been determined at four different pH values (6.5, 8.0, 9.0, 10.0) in the neutral and in charge separated states. At pH 8.0, in the neutral state, we obtain a resolution of 1.87 A, which is the best ever reported for the bacterial reaction center protein. Our crystallographic data confirm the existence of two different binding positions of the secondary quinone (QB). We observe a new orientation of QB in its distal position, which shows no ring-flip compared to the orientation in the proximal position. Datasets collected for the different pH values show a pH-dependence of the population of the proximal position. The new orientation of QB in the distal position and the pH-dependence could be confirmed by continuum electrostatics calculations. Our calculations are in agreement with the experimentally observed proton uptake upon charge separation. The high resolution of our crystallographic data allows us to identify new water molecules and external residues being involved in two previously described hydrogen bond proton channels. These extended proton-transfer pathways, ending at either of the two oxo-groups of QB in its proximal position, provide additional evidence that ring-flipping is not required for complete protonation of QB upon reduction.
Collapse
Affiliation(s)
- Juergen Koepke
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Max-von-Laue Strasse 3, D-60438 Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|