1
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Xu Q, Luo C, Fu Y, Zhu F. Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105130. [PMID: 35715068 DOI: 10.1016/j.pestbp.2022.105130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The succinate dehydrogenase inhibitor (SDHI) fungicide boscalid is an excellent broad-spectrum fungicide but has not been registered in China to control Penicillium digitatum, the causal agent of green mold of citrus. The present study evaluated the risk and molecular mechanisms for boscalid resistance in P. digitatum. Resistance induction with four arbitrarily selected sensitive isolates of P. digitatum by ultraviolet (UV) irradiation on conidia plated on boscalid-amended potato dextrose agar (PDA) and consecutive growing on boscalid-amended PDA produced five highly resistant isolates with EC50 values greater than 1000 μg/mL and two resistant isolates with EC50 lower than 200 μg/mL. Boscalid resistance of the five mutants with EC50 values above 1000 μg/mL was stable after successive transfers on PDA for 16 generations. However, for the other two mutants with EC50 lower than 200 μg/mL, the EC50 values decreased significantly after successive transfers. There was significant cross-resistance between boscalid and carboxin (r = 0.925, P < 0.001), but no significant cross-resistance was detected between boscalid and fludioxonil (r = 0.533,P = 0.095) or between boscalid and prochloraz (r = -0.543,P = 0.088). The seven resistant mutants varied greatly in the mycelia growth, sporulation, pathogenicity, and sensitivities to exogenous stresses including NaCl, salicylhydroxamic acid (SHAM), and H2O2. Alignment of the deduced amino acid sequence showed that there was no point mutation in the target enzyme succinate dehydrogenase (Sdh) subunits SdhA, SdhC, or SdhD in each of the seven resistant mutants, and the mutation of a conserved histidine residue to tyrosine (H243Y) in the subunit SdhB (i.e., iron‑sulfur protein) occurred in only three highly resistant isolates. Molecular docking indicated that mutation H243Y could not prevent the binding of boscalid into the quinone-binding site of SDH in the presence of the heme moiety. However, for SDH without the heme moiety, boscalid could bind into a deeper site with a much higher affinity, and the mutation H243Y spatially blocked the docking of boscalid into the deeper site. This may be the molecular mechanism for boscalid resistance caused by SdhB-H243Y mutation.
Collapse
Affiliation(s)
- Qianru Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoxi Luo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 2022; 23:141-161. [PMID: 34621061 DOI: 10.1038/s41580-021-00415-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases.
Collapse
Affiliation(s)
- Irene Vercellino
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
4
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
5
|
Mounkoro P, Michel T, Golinelli-Cohen MP, Blandin S, Davioud-Charvet E, Meunier B. A role for the succinate dehydrogenase in the mode of action of the redox-active antimalarial drug, plasmodione. Free Radic Biol Med 2021; 162:533-541. [PMID: 33232753 DOI: 10.1016/j.freeradbiomed.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Malaria, caused by protozoan parasites, is a major public health issue in subtropical countries. An arsenal of antimalarial treatments is available, however, resistance is spreading, calling for the development of new antimalarial compounds. The new lead antimalarial drug plasmodione is a redox-active compound that impairs the redox balance of parasites leading to cell death. Based on extensive in vitro assays, a model of its mode of action was drawn, involving the generation of active plasmodione metabolites that act as subversive substrates of flavoproteins, initiating a redox cycling process producing reactive oxygen species. We showed that, in yeast, the mitochondrial respiratory chain NADH-dehydrogenases are the main redox-cycling target enzymes. Furthermore, our data supported the proposal that plasmodione is a pro-drug acting via its benzhydrol and benzoyl metabolites. Here, we selected plasmodione-resistant yeast mutants to further decipher plasmodione mode of action. Of the eleven mutants analysed, nine harboured a mutation in the FAD binding subunit of succinate dehydrogenase (SDH). The analysis of the SDH mutations points towards a specific role for SDH-bound FAD in plasmodione bioactivation, possibly in the first step of the process, highlighting a novel property of SDH.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Thomas Michel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles (ICSN), 91198, Gif-sur-Yvette, cedex, France
| | - Stéphanie Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Université de Strasbourg, Université de Haute-Alsace, Centre National de la Recherche Scientifique (CNRS), UMR 7042 LIMA, Team Bioorganic and Medicinal Chemistry, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
6
|
Moreno C, Santos RM, Burns R, Zhang WC. Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers (Basel) 2020; 12:cancers12113237. [PMID: 33153035 PMCID: PMC7693138 DOI: 10.3390/cancers12113237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although the dysfunction of the succinate dehydrogenase complex in mitochondria leads to cancer and other diseases due to aberrant metabolic reactions and signaling pathways, it is not well known how the succinate dehydrogenase complex is regulated. Our review highlights that non-coding ribonucleic acids (RNAs), RNA editing enzymes, and RNA modifying enzymes regulate expressions and functions of the succinate dehydrogenase complex. This research will provide new strategies for treating succinate dehydrogenase-relevant diseases in a clinic. Abstract Succinate dehydrogenase (SDH) complex connects both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) in the mitochondria. However, SDH mutation or dysfunction-induced succinate accumulation results in multiple cancers and non-cancer diseases. The mechanistic studies show that succinate activates hypoxia response and other signal pathways via binding to 2-oxoglutarate-dependent oxygenases and succinate receptors. Recently, the increasing knowledge of ribonucleic acid (RNA) networks, including non-coding RNAs, RNA editors, and RNA modifiers has expanded our understanding of the interplay between SDH and RNA networks in cancer and other diseases. Here, we summarize recent discoveries in the RNA networks and their connections to SDH. Additionally, we discuss current therapeutics targeting SDH in both pre-clinical and clinical trials. Thus, we propose a new model of SDH–RNA network interaction and bring promising RNA therapeutics against SDH-relevant cancer and other diseases.
Collapse
|
7
|
Huang S, Braun HP, Gawryluk RMR, Millar AH. Mitochondrial complex II of plants: subunit composition, assembly, and function in respiration and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:405-417. [PMID: 30604579 DOI: 10.1111/tpj.14227] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 05/20/2023]
Abstract
Complex II [succinate dehydrogenase (succinate-ubiquinone oxidoreductase); EC 1.3.5.1; SDH] is the only enzyme shared by both the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. Complex II in plants is considered unusual because of its accessory subunits (SDH5-SDH8), in addition to the catalytic subunits of SDH found in all eukaryotes (SDH1-SDH4). Here, we review compositional and phylogenetic analysis and biochemical dissection studies to both clarify the presence and propose a role for these subunits. We also consider the wider functional and phylogenetic evidence for SDH assembly factors and the reports from plants on the control of SDH1 flavination and SDH1-SDH2 interaction. Plant complex II has been shown to influence stomatal opening, the plant defense response and reactive oxygen species-dependent stress responses. Signaling molecules such as salicyclic acid (SA) and nitric oxide (NO) are also reported to interact with the ubiquinone (UQ) binding site of SDH, influencing signaling transduction in plants. Future directions for SDH research in plants and the specific roles of its different subunits and assembly factors are suggested, including the potential for reverse electron transport to explain the succinate-dependent production of reactive oxygen species in plants and new avenues to explore the evolution of plant mitochondrial complex II and its utility.
Collapse
Affiliation(s)
- Shaobai Huang
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | | | - A Harvey Millar
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009, Crawley, WA, Australia
| |
Collapse
|
8
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
9
|
Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends Biochem Sci 2017; 42:312-325. [PMID: 28185716 DOI: 10.1016/j.tibs.2017.01.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial complex II (CII), also called succinate dehydrogenase (SDH), is a central purveyor of the reprogramming of metabolic and respiratory adaptation in response to various intrinsic and extrinsic stimuli and abnormalities. In this review we discuss recent findings regarding SDH biogenesis, which requires four known assembly factors, and modulation of its enzymatic activity by acetylation, succinylation, phosphorylation, and proteolysis. We further focus on the emerging role of both genetic and epigenetic aberrations leading to SDH dysfunction associated with various clinical manifestations. This review also covers the recent discovery of the role of SDH in inflammation-linked pathologies. Conceivably, SDH is a potential target for several hard-to-treat conditions, including cancer, that remains to be fully exploited.
Collapse
Affiliation(s)
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lanfeng Dong
- School of Medical Science, Griffith University, Southport, Australia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia; Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
10
|
Rehfus A, Miessner S, Achenbach J, Strobel D, Bryson R, Stammler G. Emergence of succinate dehydrogenase inhibitor resistance of Pyrenophora teres in Europe. PEST MANAGEMENT SCIENCE 2016; 72:1977-1988. [PMID: 26823120 DOI: 10.1002/ps.4244] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Net blotch caused by Pyrenophora teres is an important disease of barley worldwide. In addition to strobilurins (quinone ouside inhibitors) and azoles (demethylation inhibitors), succinate dehydrogenase inhibitors (SDHIs) are very effective fungicides for net blotch control. Recently, SDHI-resistant isolates have been found in the field. Intensive sensitivity monitoring programmes across Europe were carried out to investigate the situation concerning SDHI resistance in P. teres. RESULTS The first isolates with a lower sensitivity to SDHIs registered in barley were found in Germany in 2012 and carried the B-H277Y substitution in the succinate dehydrogenase enzyme. In 2013 and 2014, a significant increase in isolates with lower SDHI sensitivity was detected mainly in France and Germany, and the range of target-site mutations increased. Most of the resistant isolates carried the C-G79R substitution, which exhibits a strong impact on all SDHIs in microtitre tests. All SDHIs tested were shown to be cross-resistant. Other substitutions are gaining in importance, e.g. C-N75S in France and D-D145G in Germany. So far, no double mutants in SDH genes have been detected. Glasshouse tests showed that SDHI-resistant isolates were still controlled by the SDHI fluxapyroxad when applied preventively. To date, most isolates with C-G79R substitution have not simultaneously carried the F129L change in cytochrome b, which causes resistance towards QoI fungicides at low to moderate levels. CONCLUSION Several target-site mutations in the genes of subunits SDH-B, SDH-C and SDH-D with different impact on SDHI fungicides were detected. The pattern of mutations varied from year to year and between different regions. Strict resistance management strategies are recommended to maintain SDHIs as effective tools for net blotch control, especially in areas with low frequencies of resistant isolates. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Rosie Bryson
- BASF SE, Agricultural Centre, Limburgerhof, Germany
| | | |
Collapse
|
11
|
Cheng VWT, Piragasam RS, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Redox state of flavin adenine dinucleotide drives substrate binding and product release in Escherichia coli succinate dehydrogenase. Biochemistry 2015; 54:1043-52. [PMID: 25569225 DOI: 10.1021/bi501350j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.
Collapse
Affiliation(s)
- Victor W T Cheng
- Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Her YF, Maher LJ. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int J Endocrinol 2015; 2015:296167. [PMID: 26294907 PMCID: PMC4532907 DOI: 10.1155/2015/296167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/05/2015] [Indexed: 01/14/2023] Open
Abstract
It is counterintuitive that metabolic defects reducing ATP production can cause, rather than protect from, cancer. Yet this is precisely the case for familial paraganglioma, a form of neuroendocrine malignancy caused by loss of succinate dehydrogenase in the tricarboxylic acid cycle. Here we review biochemical, genetic, and epigenetic considerations in succinate dehydrogenase loss and present leading models and mysteries associated with this fascinating and important tumor.
Collapse
Affiliation(s)
- Yeng F. Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- *L. James Maher III:
| |
Collapse
|
13
|
Van Vranken JG, Na U, Winge DR, Rutter J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit Rev Biochem Mol Biol 2014; 50:168-80. [PMID: 25488574 DOI: 10.3109/10409238.2014.990556] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data.
Collapse
|
14
|
Hwang MS, Rohlena J, Dong LF, Neuzil J, Grimm S. Powerhouse down: Complex II dissociation in the respiratory chain. Mitochondrion 2014; 19 Pt A:20-8. [PMID: 24933571 DOI: 10.1016/j.mito.2014.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
Complex II of the respiratory chain (RC) recently emerged as a prominent regulator of cell death. In both cancer cells as well as neurodegenerative diseases, mutations in subunits have been found along with other genetic alterations indirectly affecting this complex. Anticancer compounds were developed that target complex II and cause cell death in a tumor-specific way. Our mechanistic understanding of how complex II is activated for cell death induction has recently been made clearer in recent studies, the results of which are covered in this review. This protein assembly is specifically activated for cell death via the dissociation of its SDHA and SDHB subunits from the membrane-anchoring proteins through pH change or mitochondrial Ca(2+) influx. The SDH activity contained in the SDHA/SDHB subcomplex remains intact and then generates, in an uncontrolled fashion, excessive amounts of reactive oxygen species (ROS) for cell death. Future studies on this mitochondrial complex will further elucidate it as a target for cancer treatments and reveal its role as a nexus for many diverse stimuli in cell death signaling.
Collapse
Affiliation(s)
- Ming-Shih Hwang
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Lan-Feng Dong
- School of Medical Science, Griffith Health Institute, Griffith University, Southport Qld 4222, Australia
| | - Jiri Neuzil
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic; School of Medical Science, Griffith Health Institute, Griffith University, Southport Qld 4222, Australia
| | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
15
|
Anderson RF, Shinde SS, Hille R, Rothery RA, Weiner JH, Rajagukguk S, Maklashina E, Cecchini G. Electron-transfer pathways in the heme and quinone-binding domain of complex II (succinate dehydrogenase). Biochemistry 2014; 53:1637-46. [PMID: 24559074 PMCID: PMC3985935 DOI: 10.1021/bi401630m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Single electron transfers have been
examined in complex II (succinate:ubiquinone
oxidoreductase) by the method of pulse radiolysis. Electrons are introduced
into the enzyme initially at the [3Fe–4S] and ubiquinone sites
followed by intramolecular equilibration with the b heme of the enzyme. To define thermodynamic and other controlling
parameters for the pathways of electron transfer in complex II, site-directed
variants were constructed and analyzed. Variants at SdhB-His207 and
SdhB-Ile209 exhibit significantly perturbed electron transfer between
the [3Fe–4S] cluster and ubiquinone. Analysis of the data using
Marcus theory shows that the electronic coupling constants for wild-type
and variant enzyme are all small, indicating that electron transfer
occurs by diabatic tunneling. The presence of the ubiquinone is necessary
for efficient electron transfer to the heme, which only slowly equilibrates
with the [3Fe–4S] cluster in the absence of the quinone.
Collapse
Affiliation(s)
- Robert F Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Grimm S. Respiratory chain complex II as general sensor for apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:565-72. [DOI: 10.1016/j.bbabio.2012.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023]
|
17
|
Kim HJ, Winge DR. Emerging concepts in the flavinylation of succinate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:627-36. [PMID: 23380393 DOI: 10.1016/j.bbabio.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
The Succinate Dehydrogenase (SDH) heterotetrameric complex catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and in the aerobic respiratory chains of eukaryotes and bacteria. Essential in this catalysis is the covalently-linked cofactor flavin adenine dinucleotide (FAD) in subunit1 (Sdh1) of the SDH enzyme complex. The mechanism of FAD insertion and covalent attachment to Sdh1 is unknown. Our working concept of this flavinylation process has relied mostly on foundational works from the 1990s and by applying the principles learned from other enzymes containing a similarly linked FAD. The discovery of the flavinylation factor Sdh5, however, has provided new insight into the possible mechanism associated with Sdh1 flavinylation. This review focuses on encapsulating prior and recent advances towards understanding the mechanism associated with flavinylation of Sdh1 and how this flavinylation process affects the overall assembly of SDH. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Hoekstra AS, Bayley JP. The role of complex II in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:543-51. [PMID: 23174333 DOI: 10.1016/j.bbabio.2012.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 01/11/2023]
Abstract
Genetically defined mitochondrial deficiencies that result in the loss of complex II function lead to a range of clinical conditions. An array of tumor syndromes caused by complex II-associated gene mutations, in both succinate dehydrogenase and associated accessory factor genes (SDHA, SDHB, SDHC, SDHD, SDHAF1, SDHAF2), have been identified over the last 12 years and include hereditary paraganglioma-pheochromocytomas, a diverse group of renal cell carcinomas, and a specific subtype of gastrointestinal stromal tumors (GIST). In addition, congenital complex II deficiencies due to inherited homozygous mutations of the catalytic components of complex II (SDHA and SDHB) and the SDHAF1 assembly factor lead to childhood disease including Leigh syndrome, cardiomyopathy and infantile leukodystrophies. The role of complex II subunit gene mutations in tumorigenesis has been the subject of intensive research and these data have led to a variety of compelling hypotheses. Among the most widely researched are the stabilization of hypoxia inducible factor 1 under normoxia, and the generation of reactive oxygen species due to defective succinate:ubiquinone oxidoreductase function. Further progress in understanding the role of complex II in disease, and in the development of new therapeutic approaches, is now being hampered by the lack of relevant cell and animal models. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
20
|
Iverson TM, Maklashina E, Cecchini G. Structural basis for malfunction in complex II. J Biol Chem 2012; 287:35430-35438. [PMID: 22904323 DOI: 10.1074/jbc.r112.408419] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex II couples oxidoreduction of succinate and fumarate at one active site with that of quinol/quinone at a second distinct active site over 40 Å away. This process links the Krebs cycle to oxidative phosphorylation and ATP synthesis. The pathogenic mutation or inhibition of human complex II or its assembly factors is often associated with neurodegeneration or tumor formation in tissues derived from the neural crest. This brief overview of complex II correlates the clinical presentations of a large number of symptom-associated alterations in human complex II activity and assembly with the biochemical manifestations of similar alterations in the complex II homologs from Escherichia coli. These analyses provide clues to the molecular basis for diseases associated with aberrant complex II function.
Collapse
Affiliation(s)
- Tina M Iverson
- Department of Pharmacology and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| | - Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158.
| |
Collapse
|
21
|
Szeto SSW, Reinke SN, Oyedotun KS, Sykes BD, Lemire BD. Expression of Saccharomyces cerevisiae Sdh3p and Sdh4p paralogs results in catalytically active succinate dehydrogenase isoenzymes. J Biol Chem 2012; 287:22509-20. [PMID: 22573324 DOI: 10.1074/jbc.m112.344275] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Succinate dehydrogenase (SDH), also known as complex II, is required for respiratory growth; it couples the oxidation of succinate to the reduction of ubiquinone. The enzyme is composed of two domains. A membrane-extrinsic catalytic domain composed of the Sdh1p and Sdh2p subunits harbors the flavin and iron-sulfur cluster cofactors. A membrane-intrinsic domain composed of the Sdh3p and Sdh4p subunits interacts with ubiquinone and may coordinate a b-type heme. In many organisms, including Saccharomyces cerevisiae, possible alternative SDH subunits have been identified in the genome. S. cerevisiae contains one paralog of the Sdh3p subunit, Shh3p (YMR118c), and two paralogs of the Sdh4p subunit, Shh4p (YLR164w) and Tim18p (YOR297c). We cloned and expressed these alternative subunits. Shh3p and Shh4p were able to complement Δsdh3 and Δsdh4 deletion mutants, respectively, and support respiratory growth. Tim18p was unable to do so. Microarray and proteomics data indicate that the paralogs are expressed under respiratory and other more restrictive growth conditions. Strains expressing hybrid SDH enzymes have distinct metabolic profiles that we distinguished by (1)H NMR analysis of metabolites. Surprisingly, the Sdh3p subunit can form SDH isoenzymes with Sdh4p or with Shh4p as well as be a subunit of the TIM22 mitochondrial protein import complex.
Collapse
Affiliation(s)
- Samuel S W Szeto
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
22
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
23
|
Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1937-49. [PMID: 22561115 DOI: 10.1016/j.bbabio.2012.04.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
24
|
Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 2012; 109:3808-13. [PMID: 22355128 DOI: 10.1073/pnas.1201089109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.
Collapse
|
25
|
Abstract
Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.
Collapse
|
26
|
Ruprecht J, Iwata S, Rothery RA, Weiner JH, Maklashina E, Cecchini G. Perturbation of the quinone-binding site of complex II alters the electronic properties of the proximal [3Fe-4S] iron-sulfur cluster. J Biol Chem 2011; 286:12756-65. [PMID: 21310949 DOI: 10.1074/jbc.m110.209874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.
Collapse
Affiliation(s)
- Jonathan Ruprecht
- Membrane Protein Crystallography Group, Molecular Biosciences Division, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 2010; 76:6615-30. [PMID: 20693447 DOI: 10.1128/aem.00931-10] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory inhibitors are among the fungicides most widely used for disease control on crops. Most are strobilurins and carboxamides, inhibiting the cytochrome b of mitochondrial complex III and the succinate dehydrogenase of mitochondrial complex II, respectively. A few years after the approval of these inhibitors for use on grapevines, field isolates of Botrytis cinerea, the causal agent of gray mold, resistant to one or both of these classes of fungicide were recovered in France and Germany. However, little was known about the mechanisms underlying this resistance in field populations of this fungus. Such knowledge could facilitate resistance risk assessment. The aim of this study was to investigate the mechanisms of resistance occurring in B. cinerea populations. Highly specific resistance to strobilurins was correlated with a single mutation of the cytb target gene. Changes in its intronic structure may also have occurred due to an evolutionary process controlling selection for resistance. Specific resistance to carboxamides was identified for six phenotypes, with various patterns of resistance levels and cross-resistance. Several mutations specific to B. cinerea were identified within the sdhB and sdhD genes encoding the iron-sulfur protein and an anchor protein of the succinate dehydrogenase complex. Another as-yet-uncharacterized mechanism of resistance was also recorded. In addition to target site resistance mechanisms, multidrug resistance, linked to the overexpression of membrane transporters, was identified in strains with low to moderate resistance to several respiratory inhibitors. This diversity of resistance mechanisms makes resistance management difficult and must be taken into account when developing strategies for Botrytis control.
Collapse
|
28
|
Rutter J, Winge DR, Schiffman JD. Succinate dehydrogenase - Assembly, regulation and role in human disease. Mitochondrion 2010; 10:393-401. [PMID: 20226277 PMCID: PMC2874626 DOI: 10.1016/j.mito.2010.03.001] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2010] [Indexed: 12/18/2022]
Abstract
Succinate dehydrogenase (or Electron Transport Chain Complex II) has been the subject of a focused but significant renaissance. This complex, which has been the least studied of the mitochondrial respiratory complexes has seen renewed interest due to the discovery of its role in human disease. Under this heightened scrutiny, the succinate dehydrogenase complex has proven to be a fascinating machine, whose regulation and assembly requires additional factors that are beginning to be discovered. Mutations in these factors and in the structural subunits of the complex itself cause a variety of human diseases. The mechanisms underlying the pathogenesis of SDH mutations is beginning to be understood.
Collapse
Affiliation(s)
- Jared Rutter
- Departments of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States.
| | | | | |
Collapse
|
29
|
Maklashina E, Cecchini G. The quinone-binding and catalytic site of complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1877-82. [PMID: 20175986 DOI: 10.1016/j.bbabio.2010.02.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
The complex II family of proteins includes succinate:quinone oxidoreductase (SQR) and quinol:fumarate oxidoreductase (QFR). In the facultative bacterium Escherichia coli both are expressed as part of the aerobic (SQR) and anaerobic (QFR) respiratory chains. SQR from E. coli is homologous to mitochondrial complex II and has proven to be an excellent model system for structure/function studies of the enzyme. Both SQR and QFR from E. coli are tetrameric membrane-bound enzymes that couple succinate/fumarate interconversion with quinone/quinol reduction/oxidation. Both enzymes are capable of binding either ubiquinone or menaquinone, however, they have adopted different quinone binding sites where catalytic reactions with quinones occur. A comparison of the structures of the quinone binding sites in SQR and QFR reveals how the enzymes have adapted in order to accommodate both benzo- and napthoquinones. A combination of structural, computational, and kinetic studies of members of the complex II family of enzymes has revealed that the catalytic quinone adopts different positions in the quinone-binding pocket. These data suggest that movement of the quinone within the quinone-binding pocket is essential for catalysis.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA
| | | |
Collapse
|
30
|
Electron transfer in Paracoccus denitrificans with the modified fbc operon. Folia Microbiol (Praha) 2010; 54:475-82. [PMID: 20140712 DOI: 10.1007/s12223-009-0067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/07/2009] [Indexed: 10/19/2022]
Abstract
Membrane fragments of two mutant strains of Paracoccus denitrificans genetically modified in the bc(1) complex have been studied for comparison of enzymic activities of succinate-cytochrome-c reductase and its components, viz. succinate dehydrogenase (Complex II) and ubiquinol-cytochrome-c reductase (Complex III) and their response to changes in concentration of succinate, cytochrome c, ionic strength, pH, temperature and sensitivity to antimycin A. The mutants synthesized and assembled the b and c hemes in the ratio characteristic for the wild type strain. The mutant strain M 71 expressing the truncated copy of cytochrome c(1) (devoid of a stretch of 150 mainly acidic amino acids) was less sensitive to increasing concentration of cytochrome c and changes in ionic strength of the medium, but maintained the original affinity to succinate and sensitivity to antimycin A. The mutant strain M 36 with an overexpressed bc(1) content showed the highest response to changes in ionic strength and physical parameters, exhibited the lowest turnover number values with succinate-cytochrome-c reductase, but positively affected the succinate dehydrogenase. In view of the interaction of the redox components in native membranes the functional analyses of separated Complexes II and III should be regarded with caution.
Collapse
|
31
|
Maklashina E, Rajagukguk S, McIntire WS, Cecchini G. Mutation of the heme axial ligand of Escherichia coli succinate-quinone reductase: implications for heme ligation in mitochondrial complex II from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:747-54. [PMID: 20100456 DOI: 10.1016/j.bbabio.2010.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate-ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol-cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.
Collapse
Affiliation(s)
- Elena Maklashina
- Molecular Biology Division, VA Medical Center, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
32
|
Mogi T, Kita K. Identification of mitochondrial Complex II subunits SDH3 and SDH4 and ATP synthase subunits a and b in Plasmodium spp. Mitochondrion 2009; 9:443-53. [PMID: 19682605 DOI: 10.1016/j.mito.2009.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/06/2023]
Abstract
While most protist mitochondrial enzymes could be identified in database, the membrane anchor subunits of Complex II and F(o)F(1)-ATP synthase of malaria parasites are not annotated. Based on the presence of structural fingerprints or proteomics data from other protists, here we present their candidates. In contrast to canonical subunits, Plasmodium Complex II anchors have two transmembrane helices and may coordinate heme b via Tyr in place of His. Transmembrane helix IV of ATP synthase subunit a lacks an essential Arg residue. Membrane anchors of Plasmodium Complex II and ATP synthase are divergent from orthologs and promising targets for new chemotherapeutics.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Japan.
| | | |
Collapse
|
33
|
Mutations in the heme b-binding residue of SDHC inhibit assembly of respiratory chain complex II in mammalian cells. Mitochondrion 2009; 9:254-60. [DOI: 10.1016/j.mito.2009.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/22/2022]
|
34
|
Mutations in the C. elegans Succinate Dehydrogenase Iron–Sulfur Subunit Promote Superoxide Generation and Premature Aging. J Mol Biol 2009; 387:559-69. [DOI: 10.1016/j.jmb.2009.02.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 11/22/2022]
|
35
|
Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J Biol Chem 2009; 284:7255-63. [PMID: 19122194 PMCID: PMC2652292 DOI: 10.1074/jbc.m806623200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/02/2009] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial respiratory enzymes play a central role in energy production in aerobic organisms. They differentiated from the alpha-proteobacteria-derived ancestors by adding noncatalytic subunits. An exception is Complex II (succinate: ubiquinone reductase), which is composed of four alpha-proteobacteria-derived catalytic subunits (SDH1-SDH4). Complex II often plays a pivotal role in adaptation of parasites in host organisms and would be a potential target for new drugs. We purified Complex II from the parasitic protist Trypanosoma cruzi and obtained the unexpected result that it consists of six hydrophilic (SDH1, SDH2N, SDH2C, and SDH5-SDH7) and six hydrophobic (SDH3, SDH4, and SDH8-SDH11) nucleus-encoded subunits. Orthologous genes for each subunit were identified in Trypanosoma brucei and Leishmania major. Notably, the iron-sulfur subunit was heterodimeric; SDH2N and SDH2C contain the plant-type ferredoxin domain in the N-terminal half and the bacterial ferredoxin domain in the C-terminal half, respectively. Catalytic subunits (SDH1, SDH2N plus SDH2C, SDH3, and SDH4) contain all key residues for binding of dicarboxylates and quinones, but the enzyme showed the lower affinity for both substrates and inhibitors than mammalian enzymes. In addition, the enzyme binds protoheme IX, but SDH3 lacks a ligand histidine. These unusual features are unique in the Trypanosomatida and make their Complex II a target for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|