1
|
Wang W, Chen L, Zhang Y, Wang H, Dong D, Zhu J, Fu W, Liu T. Adipose-derived stem cells enriched with therapeutic mRNA TGF-β3 and IL-10 synergistically promote scar-less wound healing in preclinical models. Bioeng Transl Med 2024; 9:e10620. [PMID: 38435824 PMCID: PMC10905533 DOI: 10.1002/btm2.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 03/05/2024] Open
Abstract
Skin wound healing often leads to scar formation, presenting physical and psychological challenges for patients. Advancements in messenger RNA (mRNA) modifications offer a potential solution for pulsatile cytokine delivery to create a favorable wound-healing microenvironment, thereby preventing cutaneous fibrosis. This study aimed to investigate the effectiveness of human adipose-derived stem cells (hADSCs) enriched with N 1-methylpseudouridine (m1ψ) modified transforming growth factor-β3 (TGF-β3) and interleukin-10 (IL-10) mRNA in promoting scar-free healing in preclinical models. The results demonstrated that the modified mRNA (modRNA)-loaded hADSCs efficiently and temporarily secreted TGF-β3 and IL-10 proteins. In a dorsal injury model, hADSCs loaded with modRNA TGF-β3 and IL-10 exhibited multidimensional therapeutic effects, including improved collagen deposition, extracellular matrix organization, and neovascularization. In vitro experiments confirmed the ability of these cells to markedly inhibit the proliferation and migration of keloid fibroblasts, and reverse the myofibroblast phenotype. Finally, collagen degradation mediated by matrix metalloproteinase upregulation was observed in an ex vivo keloid explant culture model. In conclusion, the synergistic effects of the modRNA TGF-β3, IL-10, and hADSCs hold promise for establishing a scar-free wound-healing microenvironment, representing a robust foundation for the management of wounds in populations susceptible to scar formation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Liang Chen
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yuxin Zhang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Heng Wang
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Dong Dong
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jingjing Zhu
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tianyi Liu
- Department of Plastic and Aesthetic SurgeryHuadong Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Althaher AR, Alwahsh M. An overview of ATP synthase, inhibitors, and their toxicity. Heliyon 2023; 9:e22459. [PMID: 38106656 PMCID: PMC10722325 DOI: 10.1016/j.heliyon.2023.e22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Sun D, Li S, Huang H, Xu L. Neurotoxicity of melittin: Role of mitochondrial oxidative phosphorylation system in synaptic plasticity dysfunction. Toxicology 2023; 497-498:153628. [PMID: 37678661 DOI: 10.1016/j.tox.2023.153628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Melittin (Mel), a main active peptide component of bee venom, has been proven to possess strong antitumor activity. Previous studies have shown that Mel caused severe cell membrane lysis and acted on the central nervous system (CNS). Here, this study was designed to investigate the effects of Mel on CNS and explore the potential mechanism. We confirmed the neurotoxic effect of melittin by in vivo and in vitro experiments. After subcutaneous administration of Mel (4 mg/kg, 8 mg/kg) for 14 days, the mice exhibited obvious depression-like behavior in a dose dependent manner. Besides, RNA-sequencing analysis revealed that oxidative phosphorylation (OXPHOS) signaling pathway was mostly enriched in hippocampus. Consistently, we found that Mel distinctly inhibited the activity of OXPHOS complex I and induced oxidative stress injury. Moreover, Mel significantly induced synaptic plasticity dysfunction in hippocampus via BDNF/TrkB/CREB signaling pathway. Taken together, the neurotoxic effect of Mel was involved in impairing OXPHOS system and hippocampal synaptic plasticity. These novel findings provide new insights into fully understanding the health risks of Mel and are conducive to the development of Mel related drugs.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Zhang C, Chen Z, Li W, Liu X, Tang S, Jiang L, Li M, Peng H, Lian M. Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target 2020; 28:789-801. [PMID: 32242754 DOI: 10.1080/1061186x.2020.1744156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ligands are an important part of targeted drug delivery systems. Optimised lignads not only improve the target efficiency, but also enhance therapeutical effect of drugs. In our research, five sugar molecules (Mannose, Galactose, Glucose, Malt disaccharide, and Maltotriose) conjugated PEG600-DSPE were synthesised, of which polysaccharides were first discovered by us as sugar ligands to modify liposomes, which interacts with over expressive GLUT on cancer cells. DiO was encapsulated as fluorescent probe to evaluate their cellular uptake abilities of targeting C6 glioma cells, and the distribution in different visceral organs of rats. The results demonstrated that Malt disaccharide and Glucose-PEG600-DSPE had the strong efficiency of cellular uptake by C6 glioma cells. The distribution and accumulation of liposomes showed that different sugars modified liposomes could target different visceral organs in rats. It has provided a novel idea for ligand selectivity and optimisation of nanocarriers for tumour targeted therapy.
Collapse
Affiliation(s)
- Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Wenhua Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Yang B, Mao J, Jiang S, Wei J, Li Y, Gao B, Lu X. Cholesterol depletion induced by RNA interference targeting DHCR24 protects cells from liposome-induced cytotoxicity. Prep Biochem Biotechnol 2019; 49:453-458. [PMID: 30896287 DOI: 10.1080/10826068.2019.1591979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Existing evidence has demonstrated liposomes as the gene transporter induce the cytotoxicity during the transfection process through several known pathways. In the present study, we investigated the possibility of siRNAs targeting 3-β-hydroxysterol △-24-reductase (DHCR24), which encodes an enzyme catalyzing the last step of cholesterol biosynthesis, to suppress the liposome cytotoxicity induced by lipid-based transfection reagent in the neuroblastoma cell line N2A. We found that the siRNAs targeting DHCR24 mRNA protect cells from the liposome-induced cell death, probably through the effect of siDHCR24s on the reduction of the cellular cholesterol and decrease in the generation of reactive oxygen species (ROS). This suggests that siRNAs targeting DHCR24 or other methods that reduce the intracellular cholesterol levels might be a good strategy for avoiding the cytotoxicity of liposomes, without impairing its efficiency of gene-delivering.
Collapse
Affiliation(s)
- Baoyu Yang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jing Mao
- a School of Life Science , Liaoning University , Shenyang , China
| | - Shan Jiang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jie Wei
- a School of Life Science , Liaoning University , Shenyang , China
| | - Yang Li
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Bing Gao
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Xiuli Lu
- a School of Life Science , Liaoning University , Shenyang , China
| |
Collapse
|
6
|
Neupane P, Bhuju S, Thapa N, Bhattarai HK. ATP Synthase: Structure, Function and Inhibition. Biomol Concepts 2019; 10:1-10. [PMID: 30888962 DOI: 10.1515/bmc-2019-0001] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative phosphorylation is carried out by five complexes, which are the sites for electron transport and ATP synthesis. Among those, Complex V (also known as the F1F0 ATP Synthase or ATPase) is responsible for the generation of ATP through phosphorylation of ADP by using electrochemical energy generated by proton gradient across the inner membrane of mitochondria. A multi subunit structure that works like a pump functions along the proton gradient across the membranes which not only results in ATP synthesis and breakdown, but also facilitates electron transport. Since ATP is the major energy currency in all living cells, its synthesis and function have widely been studied over the last few decades uncovering several aspects of ATP synthase. This review intends to summarize the structure, function and inhibition of the ATP synthase.
Collapse
Affiliation(s)
| | - Sudina Bhuju
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal India
| | - Nita Thapa
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal India
| | | |
Collapse
|
7
|
Xiao J, Zhang J, Li X, Dai X, Wang J, He Y, Wei L, Shi J, Gong N. Downregulation of Blimp1 inhibits the maturation of bone marrow-derived dendritic cells. Int J Mol Med 2018; 43:1094-1104. [PMID: 30483767 DOI: 10.3892/ijmm.2018.4000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022] Open
Abstract
Modulation of differentiation of dendritic cells (DCs), which are derived from bone marrow cells, may influence their maturation and consequently regulate their ability to present antigens to alloreactive T lymphocytes. B lymphocyte‑induced maturation protein‑1 (Blimp1) is a master regulator of immunocyte differentiation, which has been investigated for its effect on DCs. In the present study, a lentivirus was used as a vector to transduce Blimp1‑short hairpin (sh)RNA into primary bone marrow cells during their differentiation to DCs. Lentiviral‑mediated Blimp1‑shRNA (lenti‑shRNA‑Blimp1) had a transduction efficiency of >60% in DC precursors. Lenti‑shRNA‑Blimp1 significantly downregulated the expression levels of Blimp1 and modulated the expression of its target proteins, including class II major histocompatibility complex (MHC) transactivator, c‑myc and interleukin‑6. Although lenti‑shRNA‑Blimp1 did not interfere with the differentiation of bone marrow cells to DCs, it inhibited DC maturation by decreasing the expression of surface MHC‑II molecules, but not the expression of MHC‑I molecules and co‑stimulatory molecules [cluster of differentiation (CD)80/CD86]. Subsequently, alloreactive T cell proliferation was alleviated and regulatory T cells were expanded in response to lenti‑shRNA‑Blimp1. A toxicity assay indicated that the morphology and proliferation of cultured DCs were mildly influenced by the lentiviral vector, indicating that the use of alternative vectors with minimal or no toxicity could be investigated in future studies. In conclusion, transduction with lenti‑shRNA‑Blimp1 modulated the maturation of DCs via MHC‑II molecule suppression and inhibited alloreactive T cell activation. The present findings supported the application of Blimp1‑based intervention as a novel approach to induce immature DCs for further immunological research.
Collapse
Affiliation(s)
- Jiansheng Xiao
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaomin Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jing Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying He
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jun Shi
- Department of Hepatobiliary and Organ Transplantation Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2016; 72:338-353. [PMID: 27798208 DOI: 10.1093/jac/dkw426] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant (DR)-TB is the major challenge confronting the global TB control programme, necessitating treatment with second-line anti-TB drugs, often with limited therapeutic efficacy. This scenario has resulted in the inclusion of Group 5 antibiotics in various therapeutic regimens, two of which promise to impact significantly on the outcome of the therapy of DR-TB. These are the 're-purposed' riminophenazine, clofazimine, and the recently approved diarylquinoline, bedaquiline. Although they differ structurally, both of these lipophilic agents possess cationic amphiphilic properties that enable them to target and inactivate essential ion transporters in the outer membrane of Mycobacterium tuberculosis. In the case of bedaquiline, the primary target is the key respiratory chain enzyme F1/F0-ATPase, whereas clofazimine is less selective, apparently inhibiting several targets, which may underpin the extremely low level of resistance to this agent. This review is focused on similarities and differences between clofazimine and bedaquiline, specifically in respect of molecular mechanisms of antimycobacterial action, targeting of quiescent and metabolically active organisms, therapeutic efficacy in the clinical setting of DR-TB, resistance mechanisms, pharmacodynamics, pharmacokinetics and adverse events.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Maborwa T Mothiba
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Shi W, Li C, Li M, Zong X, Han D, Chen Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol 2016; 100:5059-67. [PMID: 26948237 PMCID: PMC4866983 DOI: 10.1007/s00253-016-7400-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Caiyun Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Man Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Xicui Zong
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Dongju Han
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Tu Y, Jin Y, Ma D, Li H, Zhang Z, Dong J, Wang T. Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco. Sci Rep 2015; 5:15605. [PMID: 26499367 PMCID: PMC4620480 DOI: 10.1038/srep15605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022] Open
Abstract
The photosynthetic rate of virus-infected plants is always reduced. However, the molecular mechanism underlying this phenomenon remains unclear. The helper component-proteinase (HC-Pro) of Potato virus Y (PVY) was found in the chloroplasts of PVY-infected tobacco, indicating some new function of HC-Pro in the chloroplasts. We generated HC-Pro transgenic plants with a transit peptide to target the protein to chloroplast. The HC-Pro transgenic tobacco showed a decreased photosynthetic rate by 25% at the light intensity of 600 μmol m(-2) s(-1). Using a yeast two-hybrid screening assay to search for chloroplast proteins interacting with HC-Pro, we identified that PVY HC-Pro can interact with the chloroplast ATP synthase NtCF1β-subunit. This interaction was confirmed by GST pull-down and co-immunoprecipitation assays. HC-Pro didn't interfere with the activity of assembled ATP synthase in vitro. The HC-Pro/NtCF1β-subunit interaction might affect the assembly of ATP synthase complex. Quantitative western blot and immunogold labeling of the ATP synthase indicated that the amount of ATP synthase complex was decreased in both the HC-Pro transgenic and the PVY-infected tobacco. These results demonstrate that HC-Pro plays an important role in reducing the photosynthetic rate of PVY-infected plants, which is a completely new role of HC-Pro besides its multiple known functions.
Collapse
Affiliation(s)
- Yayi Tu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongsheng Jin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongyuan Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Heng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Liu L, Liu X, Xu Q, Wu P, Zuo X, Zhang J, Deng H, Wu Z, Ji A. Self-assembled nanoparticles based on the c(RGDfk) peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy. Int J Nanomedicine 2014; 9:3509-26. [PMID: 25114522 PMCID: PMC4122582 DOI: 10.2147/ijn.s63717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The clinical application of small interfering RNA (siRNA) has been restricted by their poor intracellular uptake, low serum stability, and inability to target specific cells. During the last several decades, a great deal of effort has been devoted to exploring materials for siRNA delivery. In this study, biodegradable, tumor-targeted, self-assembled peptide nanoparticles consisting of cyclo(Arg–Gly–Asp–d–Phe–Lys)-8–amino–3,6–dioxaoctanoic acid–β–maleimidopropionic acid (hereafter referred to as RPM) were found to be an effective siRNA carrier both in vitro and in vivo. The nanoparticles were characterized based on transmission electron microscopy, circular dichroism spectra, and dynamic light scattering. In vitro analyses showed that the RPM/VEGFR2-siRNA exhibited negligible cytotoxicity and induced effective gene silencing. Delivery of the RPM/VEGFR2 (zebrafish)-siRNA into zebrafish embryos resulted in inhibition of neovascularization. Administration of RPM/VEGFR2 (mouse)-siRNA to tumor-bearing nude mice led to a significant inhibition of tumor growth, a marked reduction of vessels, and a down-regulation of VEGFR2 (messenger RNA and protein) in tumor tissue. Furthermore, the levels of IFN-α, IFN-γ, IL-12, and IL-6 in mouse serum, assayed via enzyme-linked immunosorbent assay, did not indicate any immunogenicity of the RPM/VEGFR2 (mouse)-siRNA in vivo. In conclusion, RPM may provide a safe and effective delivery vector for the clinical application of siRNAs in tumor therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoxia Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qian Xu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, People's Republic of China
| | - Xialin Zuo
- Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, People's Republic of China
| | - Jingjing Zhang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Houliang Deng
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuomin Wu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aimin Ji
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
13
|
Li YH, Jin LF, Du LF, Shi QS, Liu L, Jia X, Wu Y, Li F, Wang HH. Enhancing HSP70-ShRNA transfection in 22RV1 prostate cancer cells by combination of sonoporation, liposomes and HTERT/CMV chimeric promoter. Int J Oncol 2013; 43:151-8. [PMID: 23620085 DOI: 10.3892/ijo.2013.1921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/10/2013] [Indexed: 11/06/2022] Open
Abstract
Gene therapy is a potentially viable approach for treating hormone-refractory prostate cancer (HRPC), it requires efficient delivery systems and a target gene. Inducing carcinoma cell apoptosis by inhibition of heat shock protein 70 (HSP70) overexpression has been emerging as an attractive strategy for cancer therapy. In our study, the high tumor-specificity of human telomerase reverse transcriptase (HTERT) expression prompted the use of an HTERT/cytomegalovirus (CMV) chimeric promoter to drive HSP70-ShRNA expression to induce HRPC 22RV1 cell apoptosis. At the same time, sonoporation induced by ultrasound-targeted microbubble destruction (UTMD) was utilized for delivery of plasmid loaded with HTERT/CMV promoter. Our results indicated the combination of sonoporation, low-dose liposomes and HTERT/CMV chimeric promoter as a delivery system has the potential to promote efficient gene transfer with lower cytotoxicity.
Collapse
Affiliation(s)
- Yun Hua Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu P, Yu H, Sun Y, Zhu M, Duan Y. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials 2012; 33:4403-12. [DOI: 10.1016/j.biomaterials.2012.02.041] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
15
|
TU X, MIN LF, CHEN Q, XIE MX, HE LL. Study on Using Magnetic Iron Oxide Nanoparticles as HIF-1α shRNA Gene Carrier to Reverse Cisplatin Resistance of A549/CDDP Cell Lines*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Hossain MD, Furuike S, Onoue Y, Adachi K, Yoshida M, Kinosita K. Stimulation of F(1)-ATPase activity by sodium dodecyl sulfate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:435-42. [PMID: 20044971 DOI: 10.1016/j.bbabio.2009.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/01/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
F(1)-ATPase is a rotary molecular motor in which the gamma subunit rotates inside the cylinder made of alpha(3)beta(3) subunits. We have studied the effects of sodium dodecyl sulfate (SDS) on the rotational and ATP hydrolysis activities of F(1)-ATPase. Bulk hydrolysis activity at various SDS concentrations was examined at 2mM ATP. Maximal stimulation was obtained at 0.003% (w/v) SDS, the initial (least inhibited) activity being about 1.4 times and the steady-state activity 3-4 times the values in the absence of SDS. Rotation rates observed with a 40-nm gold bead or a 0.29-mum bead duplex as well as the torque were unaffected by the presence of 0.003% SDS. The fraction of beads that rotated, in contrast, tended to increase in the presence of SDS. SDS seems to bring inactive F(1) molecules into an active form but it does not alter or enhance the function of already active F(1) molecules significantly.
Collapse
Affiliation(s)
- Mohammad Delawar Hossain
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|