1
|
Azarkina NV. Requirement of Bacillus subtilis succinate:menaquinone oxidoreductase activity for membrane energization depends on the direction of catalysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149522. [PMID: 39521199 DOI: 10.1016/j.bbabio.2024.149522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Succinate:quinone oxidoreductases (SQR) from Bacilli catalyze reduction of menaquinone by succinate, as well as the reverse reaction. The direct activity is energetically unfavorable and lost upon ΔμН+ dissipation, thus suggesting ΔμН+ to be consumed during catalysis. Paradoxically, the generation of ΔμН+ upon fumarate reduction was never confirmed. Thus, the exact role of ΔμН+ in the operation of bacillary-type SQRs remained questionable. The purpose of this work was to clarify this issue. We have described the different operating modes of the membrane-bound SQR from Bacillus subtilis. Tightly coupled membrane vesicles from both wild-type cells and the mutant containing cytochrome bd as the only terminal oxidase were studied. This made it possible to compare the respiratory chains with 2 versus 1H+/e- stoichiometry of ΔμН+ generation. Direct and reverse activities of SQR were determined under either energized or deenergized conditions. The wild-type membranes demonstrated high succinate oxidase activity very sensitive to uncoupling. On the contrary, the mutant showed extremely low succinate oxidase activity resistant to uncoupling. ΔμН+ generation at the cost of ATP hydrolysis restored the uncoupling sensitive succinate respiration in the mutant. Membranes of the both types effectively reduced fumarate by menaquinol. This activity was not affected by energization or uncoupling, neither it was followed by ΔμН+ generation. Thus, B. subtilis SQR demonstrates two regimes: ΔμН+-coupled and not coupled. This behavior can be explained by assuming the presence of two menaquinone binding sites which drastically differ in affinity for the oxidized and reduced substrate.
Collapse
Affiliation(s)
- Natalia V Azarkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobjovy Gory, Moscow 119992, Russia.
| |
Collapse
|
2
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
3
|
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Ishii T, Takanashi Y, Sugita K, Miyazawa M, Yanagihara R, Yasuda K, Onouchi H, Kawabe N, Nakata M, Yamamoto Y, Hartman PS, Ishii N. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 2017; 16:39-51. [PMID: 27623715 PMCID: PMC5242301 DOI: 10.1111/acel.12523] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/28/2022] Open
Abstract
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Institute of Medical Sciences; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Yumi Takanashi
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Koichi Sugita
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Masaki Miyazawa
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Rintaro Yanagihara
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Kayo Yasuda
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Hiromi Onouchi
- Department of Ophthalmology; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry; Tokai University School of Engineering; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Phil S. Hartman
- Department of Biology; Texas Christian University; Fort Worth TX 76129 USA
| | - Naoaki Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| |
Collapse
|
5
|
Atypical features of Thermus thermophilus succinate:quinone reductase. PLoS One 2013; 8:e53559. [PMID: 23308253 PMCID: PMC3538594 DOI: 10.1371/journal.pone.0053559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022] Open
Abstract
The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His8-SdhB and rcII-SdhB-His6) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.
Collapse
|
6
|
Tsujimura S, Fukuda J, Shirai O, Kano K, Sakai H, Tokita Y, Hatazawa T. Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle. Biosens Bioelectron 2012; 34:244-8. [PMID: 22391482 DOI: 10.1016/j.bios.2012.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 11/19/2022]
Abstract
The mediated electro-enzymatic electrolysis systems based on the tricarboxylic acid (TCA) cycle reaction were examined on a micro-bulk electrolytic system. A series of the enzyme-catalyzed reactions in the TCA cycle was coupled with electrode reaction. Electrochemical oxidation of NADH was catalyzed by diaphorase with an aid of a redox mediator with a formal potential of -0.15 V vs. Ag|AgCl. The mediator was also able to shuttle electrons between succinate dehydrogenase and electrode. The charge during the electrolysis increased on each addition of dehydrogenase reaction in a cascade of the TCA cycle. However, the electrolysis efficiencies were close to or less than 90% because of the product inhibition. Lactate oxidation to acetyl-CoA catalyzed by two NAD-dependent dehydrogenases was coupled with the bioelectrochemical TCA cycle reaction to achieve the 12-electron oxidation of lactate to CO(2). The charge passed in the bioelectrocatalytic oxidation of 5 nmol of lactate was 4 mC, which corresponds to 70% of the electrolysis efficiency.
Collapse
Affiliation(s)
- Seiya Tsujimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Nakamura K, Ikeda S, Matsuo T, Hirata A, Takehara M, Hiyama T, Kawamura F, Kusaka I, Tsuchiya T, Kuroda T, Yabe I. Patch clamp analysis of the respiratory chain in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1103-7. [PMID: 21255555 DOI: 10.1016/j.bbamem.2011.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/08/2011] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
Bacillus subtilis is a representative Gram-positive bacterium. In aerobic conditions, this bacterium can generate an electrochemical potential across the membrane with aerobic respiration. Here, we developed the patch clamp method to analyze the respiratory chain in B. subtilis. First, we prepared giant protoplasts (GPs) from B. subtilis cells. Electron micrographs and fluorescent micrographs revealed that GPs of B. subtilis had a vacuole-like structure and that the intravacuolar area was completely separated from the cytoplasmic area. Acidification of the interior of the isolated and purified vacuole-like structure, due to H(+) translocation after the addition of NADH, revealed that they consisted of everted cytoplasmic membranes. We called these giant provacuoles (GVs) and again applied the patch clamp technique. When NADH was added as an electron donor for the respiratory system, a significant NADH-induced current was observed. Inhibition of KCN and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) demonstrated that this current is certainly due to aerobic respiration in B. subtilis. This is the first step for more detailed analyses of respiratory chain in B. subtilis, especially H(+) translocation mechanism.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Genome Applied Microbiology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kolaj-Robin O, O'Kane SR, Nitschke W, Léger C, Baymann F, Soulimane T. Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:68-79. [PMID: 20951673 DOI: 10.1016/j.bbabio.2010.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.
Collapse
Affiliation(s)
- Olga Kolaj-Robin
- Chemical and Environmental Sciences Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Azarkina NV, Konstantinov AA. Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2010; 75:50-62. [DOI: 10.1134/s0006297910010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, Hägerhäll C, Gorton L. Electrical Wiring of Live, Metabolically Enhanced Bacillus subtilis Cells with Flexible Osmium-Redox Polymers. J Am Chem Soc 2009; 131:16171-6. [DOI: 10.1021/ja905442a] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vasile Coman
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Tobias Gustavsson
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Arnonas Finkelsteinas
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Claes von Wachenfeldt
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Lo Gorton
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| |
Collapse
|
11
|
Alferov S, Coman V, Gustavsson T, Reshetilov A, von Wachenfeldt C, Hägerhäll C, Gorton L. Electrical communication of cytochrome enriched Escherichia coli JM109 cells with graphite electrodes. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.03.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Abstract
Quinone oxidoreductases are a class of membrane enzymes that catalyse the oxidation or reduction of membrane-bound quinols/quinones. The conversion of quinone/quinol by these enzymes is difficult to study because of the hydrophobic nature of the enzymes and their substrates. We describe some biochemical properties of quinones and quinone oxidoreductases and then look in more detail at two model membranes that can be used to study quinone oxidoreductases in a native-like membrane environment with their native lipophilic quinone substrates. The results obtained with these model membranes are compared with classical enzyme assays that use water-soluble quinone analogues.
Collapse
Affiliation(s)
- Sophie A. Weiss
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J. C. Jeuken
- Centre for Self Organising Molecular Systems, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
|